Atmospheric tide

Last updated

Atmospheric tides are global-scale periodic oscillations of the atmosphere. In many ways they are analogous to ocean tides. Atmospheric tides can be excited by:

Contents

General characteristics

The largest-amplitude atmospheric tides are mostly generated in the troposphere and stratosphere when the atmosphere is periodically heated, as water vapor and ozone absorb solar radiation during the day. These tides propagate away from the source regions and ascend into the mesosphere and thermosphere. Atmospheric tides can be measured as regular fluctuations in wind, temperature, density and pressure. Although atmospheric tides share much in common with ocean tides they have two key distinguishing features:

  1. Atmospheric tides are primarily excited by the Sun's heating of the atmosphere whereas ocean tides are excited by the Moon's gravitational pull and to a lesser extent by the Sun's gravity. This means that most atmospheric tides have periods of oscillation related to the 24-hour length of the solar day whereas ocean tides have periods of oscillation related both to the solar day as well as to the longer lunar day (time between successive lunar transits) of about 24 hours 51 minutes.
  2. Atmospheric tides propagate in an atmosphere where density varies significantly with height. A consequence of this is that their amplitudes naturally increase exponentially as the tide ascends into progressively more rarefied regions of the atmosphere (for an explanation of this phenomenon, see below). In contrast, the density of the oceans varies only slightly with depth and so there the tides do not necessarily vary in amplitude with depth.

At ground level, atmospheric tides can be detected as regular but small oscillations in surface pressure with periods of 24 and 12 hours. However, at greater heights, the amplitudes of the tides can become very large. In the mesosphere (heights of about 50–100 km (30–60 mi; 200,000–300,000 ft)) atmospheric tides can reach amplitudes of more than 50 m/s and are often the most significant part of the motion of the atmosphere.

The reason for this dramatic growth in amplitude from tiny fluctuations near the ground to oscillations that dominate the motion of the mesosphere lies in the fact that the density of the atmosphere decreases with increasing height. As tides or waves propagate upwards, they move into regions of lower and lower density. If the tide or wave is not dissipating, then its kinetic energy density must be conserved. Since the density is decreasing, the amplitude of the tide or wave increases correspondingly so that energy is conserved.

Following this growth with height atmospheric tides have much larger amplitudes in the middle and upper atmosphere than they do at ground level.

Solar atmospheric tides

The largest amplitude atmospheric tides are generated by the periodic heating of the atmosphere by the Sun the atmosphere is heated during the day and not heated at night. This regular diurnal (daily) cycle in heating generates thermal tides that have periods related to the solar day. It might initially be expected that this diurnal heating would give rise to tides with a period of 24 hours, corresponding to the heating's periodicity. However, observations reveal that large amplitude tides are generated with periods of 24 and 12 hours. Tides have also been observed with periods of 8 and 6 hours, although these latter tides generally have smaller amplitudes. This set of periods occurs because the solar heating of the atmosphere occurs in an approximate square wave profile and so is rich in harmonics. When this pattern is decomposed into separate frequency components using a Fourier transform, as well as the mean and daily (24-hour) variation, significant oscillations with periods of 12, 8 and 6 hours are produced. Tides generated by the gravitational effect of the sun are very much smaller than those generated by solar heating. Solar tides will refer to only thermal solar tides from this point.

Solar energy is absorbed throughout the atmosphere some of the most significant in this context are[ clarification needed ] water vapor at about 0–15 km in the troposphere, ozone at about 30–60 km in the stratosphere and molecular oxygen and molecular nitrogen at about 120–170 km) in the thermosphere. Variations in the global distribution and density of these species result in changes in the amplitude of the solar tides. The tides are also affected by the environment through which they travel.

Solar tides can be separated into two components: migrating and non-migrating.

Migrating solar tides

Figure 1. Tidal temperature and wind perturbations at 100 km altitude for September 2005 as a function of universal time. The animation is based upon observations from the SABER and TIDI instruments on board the TIMED satellite. It shows the superposition of the most important diurnal and semidiurnal tidal components (migrating and nonmigrating). Timed100kmsabertidisep2005.gif
Figure 1. Tidal temperature and wind perturbations at 100 km altitude for September 2005 as a function of universal time. The animation is based upon observations from the SABER and TIDI instruments on board the TIMED satellite. It shows the superposition of the most important diurnal and semidiurnal tidal components (migrating and nonmigrating).

Migrating tides are sun synchronous from the point of view of a stationary observer on the ground they propagate westwards with the apparent motion of the Sun. As the migrating tides stay fixed relative to the Sun a pattern of excitation is formed that is also fixed relative to the Sun. Changes in the tide observed from a stationary viewpoint on the Earth's surface are caused by the rotation of the Earth with respect to this fixed pattern. Seasonal variations of the tides also occur as the Earth tilts relative to the Sun and so relative to the pattern of excitation. [1]

The migrating solar tides have been extensively studied both through observations and mechanistic models. [2]

Non-migrating solar tides

Non-migrating tides can be thought of as global-scale waves with the same periods as the migrating tides. However, non-migrating tides do not follow the apparent motion of the Sun. Either they do not propagate horizontally, they propagate eastwards or they propagate westwards at a different speed to the Sun. These non-migrating tides may be generated by differences in topography with longitude, land-sea contrast, and surface interactions. An important source is latent heat release due to deep convection in the tropics.

The primary source for the 24-hr tide is in the lower atmosphere where surface effects are important. This is reflected in a relatively large non-migrating component seen in longitudinal differences in tidal amplitudes. Largest amplitudes have been observed over South America, Africa and Australia. [3]

Lunar atmospheric tides

Atmospheric tides are also produced through the gravitational effects of the Moon. [4] Lunar (gravitational) tides are much weaker than solar thermal tides and are generated by the motion of the Earth's oceans (caused by the Moon) and to a lesser extent the effect of the Moon's gravitational attraction on the atmosphere.

Classical tidal theory

The basic characteristics of the atmospheric tides are described by the classical tidal theory. [5] By neglecting mechanical forcing and dissipation, the classical tidal theory assumes that atmospheric wave motions can be considered as linear perturbations of an initially motionless zonal mean state that is horizontally stratified and isothermal. The two major results of the classical theory are

Basic equations

The primitive equations lead to the linearized equations for perturbations (primed variables) in a spherical isothermal atmosphere: [6]

  • horizontal momentum equations
  • energy equation
  • continuity equation

with the definitions

Separation of variables

The set of equations can be solved for atmospheric tides, i.e., longitudinally propagating waves of zonal wavenumber and frequency . Zonal wavenumber is a positive integer so that positive values for correspond to eastward propagating tides and negative values to westward propagating tides. A separation approach of the form

and doing some manipulations [7] yields expressions for the latitudinal and vertical structure of the tides.

Laplace's tidal equation

The latitudinal structure of the tides is described by the horizontal structure equation which is also called Laplace's tidal equation:

with Laplace operator

using , and eigenvalue

Hence, atmospheric tides are eigenoscillations (eigenmodes)of Earth's atmosphere with eigenfunctions , called Hough functions, and eigenvalues . The latter define the equivalent depth which couples the latitudinal structure of the tides with their vertical structure.

General solution of Laplace's equation

Figure 2. Eigenvalue e of wave modes of zonal wave number s = 1 vs. normalized frequency n = o/O where O = 7.27x10 s is the angular frequency of one solar day. Waves with positive (negative) frequencies propagate to the east (west). The horizontal dashed line is at ec [?] 11 and indicates the transition from internal to external waves. Meaning of the symbols: 'RH' Rossby-Haurwitz waves (e = 0); 'Y' Yanai waves; 'K' Kelvin waves; 'R' Rossby waves; 'DT' Diurnal tides (n = -1); 'NM' Normal modes (e [?] ec) Eigenvalue.jpg
Figure 2. Eigenvalue ε of wave modes of zonal wave number s = 1 vs. normalized frequency ν = ω where Ω = 7.27×10 s is the angular frequency of one solar day. Waves with positive (negative) frequencies propagate to the east (west). The horizontal dashed line is at εc ≃ 11 and indicates the transition from internal to external waves. Meaning of the symbols: 'RH' Rossby-Haurwitz waves (ε = 0); 'Y' Yanai waves; 'K' Kelvin waves; 'R' Rossby waves; 'DT' Diurnal tides (ν = −1); 'NM' Normal modes (εεc)

Longuet-Higgins [8] has completely solved Laplace's equations and has discovered tidal modes with negative eigenvalues ε s
n
 
(Figure 2). There exist two kinds of waves: class 1 waves, (sometimes called gravity waves), labelled by positive n, and class 2 waves (sometimes called rotational waves), labelled by negative n. Class 2 waves owe their existence to the Coriolis force and can only exist for periods greater than 12 hours (or |ν| ≤ 2). Tidal waves can be either internal (travelling waves) with positive eigenvalues (or equivalent depth) which have finite vertical wavelengths and can transport wave energy upward, or external (evanescent waves) with negative eigenvalues and infinitely large vertical wavelengths meaning that their phases remain constant with altitude. These external wave modes cannot transport wave energy, and their amplitudes decrease exponentially with height outside their source regions. Even numbers of n correspond to waves symmetric with respect to the equator, and odd numbers corresponding to antisymmetric waves. The transition from internal to external waves appears at εεc, or at the vertical wavenumber kz = 0, and λz ⇒ ∞, respectively.

Figure 3. Pressure amplitudes vs. latitude of the Hough functions of the diurnal tide (s = 1; n = -1) (left) and of the semidiurnal tides (s = 2; n = -2) (right) on the northern hemisphere. Solid curves: symmetric waves; dashed curves: antisymmetric waves Meridionalstr.jpg
Figure 3. Pressure amplitudes vs. latitude of the Hough functions of the diurnal tide (s = 1; ν = −1) (left) and of the semidiurnal tides (s = 2; ν = −2) (right) on the northern hemisphere. Solid curves: symmetric waves; dashed curves: antisymmetric waves

The fundamental solar diurnal tidal mode which optimally matches the solar heat input configuration and thus is most strongly excited is the Hough mode (1, −2) (Figure 3). It depends on local time and travels westward with the Sun. It is an external mode of class 2 and has the eigenvalue of ε 1
−2
 
= −12.56
. Its maximum pressure amplitude on the ground is about 60 Pa. [5] The largest solar semidiurnal wave is mode (2, 2) with maximum pressure amplitudes at the ground of 120 Pa. It is an internal class 1 wave. Its amplitude increases exponentially with altitude. Although its solar excitation is half of that of mode (1, −2), its amplitude on the ground is larger by a factor of two. This indicates the effect of suppression of external waves, in this case by a factor of four. [9]

Vertical structure equation

For bounded solutions and at altitudes above the forcing region, the vertical structure equation in its canonical form is:

with solution

using the definitions

Propagating solutions

Therefore, each wavenumber/frequency pair (a tidal component) is a superposition of associated Hough functions (often called tidal modes in the literature) of index n. The nomenclature is such that a negative value of n refers to evanescent modes (no vertical propagation) and a positive value to propagating modes. The equivalent depth is linked to the vertical wavelength , since is the vertical wavenumber:

For propagating solutions , the vertical group velocity

becomes positive (upward energy propagation) only if for westward or if for eastward propagating waves. At a given height , the wave maximizes for

For a fixed longitude , this in turn always results in downward phase progression as time progresses, independent of the propagation direction. This is an important result for the interpretation of observations: downward phase progression in time means an upward propagation of energy and therefore a tidal forcing lower in the atmosphere. Amplitude increases with height , as density decreases.

Dissipation

Damping of the tides occurs primarily in the lower thermosphere region, and may be caused by turbulence from breaking gravity waves. A similar phenomenon to ocean waves breaking on a beach, the energy dissipates into the background atmosphere. Molecular diffusion also becomes increasingly important at higher levels in the lower thermosphere as the mean free path increases in the rarefied atmosphere. [10] [ verification needed ]

At thermospheric heights, attenuation of atmospheric waves, mainly due to collisions between the neutral gas and the ionospheric plasma, becomes significant so that at above about 150 km altitude, all wave modes gradually become external waves, and the Hough functions degenerate to spherical functions; e.g., mode (1, −2) develops to the spherical function P 1
1
 
(θ)
, mode (2, 2) becomes P 2
2
 
(θ)
, with θ the co-latitude, etc. [9] Within the thermosphere, mode (1, −2) is the predominant mode reaching diurnal temperature amplitudes at the exosphere of at least 140 K and horizontal winds of the order of 100 m/s and more increasing with geomagnetic activity. [11] It is responsible for the electric Sq currents within the ionospheric dynamo region between about 100 and 200 km altitude. [12] Both diurnal and semidiurnal tides can be observed across the ionospheric dynamo region with incoherent scatter radars by tracking the tidal motion of ionospheric plasma. [13]

Effects of atmospheric tide

The tides form an important mechanism for transporting energy from the lower atmosphere into the upper atmosphere, [10] while dominating the dynamics of the mesosphere and lower thermosphere. Therefore, understanding the atmospheric tides is essential in understanding the atmosphere as a whole. Modeling and observations of atmospheric tides are needed in order to monitor and predict changes in the Earth's atmosphere. [9]

See also

Notes and references

  1. Global Scale Wave Model UCAR
  2. GSWM References
  3. Hagan, M. E.; Forbes, J. M.; Richmond, A. (2003). "Atmospheric Tides". Encyclopedia of Atmospheric Sciences.
  4. "Tides found in atmosphere". Sydney Morning Herald . September 9, 1947. p. 17. Archived from the original on January 29, 2020.
  5. 1 2 Chapman, S.; Lindzen, R. S. (1970). Atmospheric Tides. Norwell, Massachusetts: D. Reidel.
  6. Holton, J. R. (1975). "The Dynamic Meteorology of the Stratosphere and Mesosphere". Meteorological Monographs. Massachusetts: American Meteorological Society. 15 (37).
  7. J. Oberheide (2007). On large-scale wave coupling across the stratopause. Archived July 22, 2011, at the Wayback Machine . Appendix A2, pp. 113117. University of Wuppertal.
  8. Longuet-Higgins, M. S., "The eigenfunctions of Laplace's equations over a sphere", Philosophical Transactions of the Royal Society, London, A262, 511, 1968
  9. 1 2 3 Volland, H., "Atmospheric Tidal and Planetary Waves", Dordrecht: Kluwer, 1988
  10. 1 2 Forbes, J. M.; Zhang, X.; Palo, S.; Russell, J.; Mertens, C. J.; Mlynczak, M. (22 February 2008). "Tidal variability in the ionospheric dynamo region". Journal of Geophysical Research: Space Physics. 113. doi:10.1029/2007JA012737.
  11. Kohl, H.; King, J. W. (1967). "Atmospheric winds between 100 and 700 km and their effects on the ionosphere". Journal of Atmospheric and Terrestrial Physics. 29 (9): 1045–1062. doi:10.1016/0021-9169(67)90139-0.
  12. Kato, S. (1 July 1966). "Diurnal atmospheric oscillation: 2. Thermal excitation in the upper atmosphere". Journal of Geophysical Research. 71 (13): 3211–3214. doi:10.1029/JZ071i013p03211.
  13. Günzkofer, F.; Pokhotelov, D.; Stober, G.; Liu, H.; Liu, H.-L.; Mitchell, N.J.; Tjulin, A.; Borries, C. (2022-09-25). "Determining the Origin of Tidal Oscillations in the Ionospheric Transition Region With EISCAT Radar and Global Simulation Data". Journal of Geophysical Research: Space Physics. 127 (10). doi:10.1029/2022JA030861.

Related Research Articles

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical physics, the Dirac delta distribution, also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one.

<span class="mw-page-title-main">Thermosphere</span> Layer of the Earths atmosphere above the mesosphere and below the exosphere

The thermosphere is the layer in the Earth's atmosphere directly above the mesosphere and below the exosphere. Within this layer of the atmosphere, ultraviolet radiation causes photoionization/photodissociation of molecules, creating ions; the thermosphere thus constitutes the larger part of the ionosphere. Taking its name from the Greek θερμός meaning heat, the thermosphere begins at about 80 km (50 mi) above sea level. At these high altitudes, the residual atmospheric gases sort into strata according to molecular mass. Thermospheric temperatures increase with altitude due to absorption of highly energetic solar radiation. Temperatures are highly dependent on solar activity, and can rise to 2,000 °C (3,630 °F) or more. Radiation causes the atmospheric particles in this layer to become electrically charged, enabling radio waves to be refracted and thus be received beyond the horizon. In the exosphere, beginning at about 600 km (375 mi) above sea level, the atmosphere turns into space, although, by the judging criteria set for the definition of the Kármán line (100 km), most of the thermosphere is part of space. The border between the thermosphere and exosphere is known as the thermopause.

<span class="mw-page-title-main">Noether's theorem</span> Statement relating differentiable symmetries to conserved quantities

Noether's theorem or Noether's first theorem states that every differentiable symmetry of the action of a physical system with conservative forces has a corresponding conservation law. The theorem was proven by mathematician Emmy Noether in 1915 and published in 1918. The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action. This theorem only applies to continuous and smooth symmetries over physical space.

In the calculus of variations, a field of mathematical analysis, the functional derivative relates a change in a functional to a change in a function on which the functional depends.

The primitive equations are a set of nonlinear partial differential equations that are used to approximate global atmospheric flow and are used in most atmospheric models. They consist of three main sets of balance equations:

  1. A continuity equation: Representing the conservation of mass.
  2. Conservation of momentum: Consisting of a form of the Navier–Stokes equations that describe hydrodynamical flow on the surface of a sphere under the assumption that vertical motion is much smaller than horizontal motion (hydrostasis) and that the fluid layer depth is small compared to the radius of the sphere
  3. A thermal energy equation: Relating the overall temperature of the system to heat sources and sinks
<span class="mw-page-title-main">Path integral formulation</span> Formulation of quantum mechanics

The path integral formulation is a description in quantum mechanics that generalizes the action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.

<span class="mw-page-title-main">Internal wave</span> Type of gravity waves that oscillate within a fluid medium

Internal waves are gravity waves that oscillate within a fluid medium, rather than on its surface. To exist, the fluid must be stratified: the density must change with depth/height due to changes, for example, in temperature and/or salinity. If the density changes over a small vertical distance, the waves propagate horizontally like surface waves, but do so at slower speeds as determined by the density difference of the fluid below and above the interface. If the density changes continuously, the waves can propagate vertically as well as horizontally through the fluid.

<span class="mw-page-title-main">Bending</span> Strain caused by an external load

In applied mechanics, bending characterizes the behavior of a slender structural element subjected to an external load applied perpendicularly to a longitudinal axis of the element.

<span class="mw-page-title-main">LSZ reduction formula</span> Connection between correlation functions and the S-matrix

In quantum field theory, the Lehmann–Symanzik–Zimmerman (LSZ) reduction formula is a method to calculate S-matrix elements from the time-ordered correlation functions of a quantum field theory. It is a step of the path that starts from the Lagrangian of some quantum field theory and leads to prediction of measurable quantities. It is named after the three German physicists Harry Lehmann, Kurt Symanzik and Wolfhart Zimmermann.

<span class="mw-page-title-main">Nonlinear Schrödinger equation</span> Nonlinear form of the Schrödinger equation

In theoretical physics, the (one-dimensional) nonlinear Schrödinger equation (NLSE) is a nonlinear variation of the Schrödinger equation. It is a classical field equation whose principal applications are to the propagation of light in nonlinear optical fibers and planar waveguides and to Bose–Einstein condensates confined to highly anisotropic, cigar-shaped traps, in the mean-field regime. Additionally, the equation appears in the studies of small-amplitude gravity waves on the surface of deep inviscid (zero-viscosity) water; the Langmuir waves in hot plasmas; the propagation of plane-diffracted wave beams in the focusing regions of the ionosphere; the propagation of Davydov's alpha-helix solitons, which are responsible for energy transport along molecular chains; and many others. More generally, the NLSE appears as one of universal equations that describe the evolution of slowly varying packets of quasi-monochromatic waves in weakly nonlinear media that have dispersion. Unlike the linear Schrödinger equation, the NLSE never describes the time evolution of a quantum state. The 1D NLSE is an example of an integrable model.

Alternatives to general relativity are physical theories that attempt to describe the phenomenon of gravitation in competition with Einstein's theory of general relativity. There have been many different attempts at constructing an ideal theory of gravity.

<span class="mw-page-title-main">Boussinesq approximation (water waves)</span> Approximation valid for weakly non-linear and fairly long waves

In fluid dynamics, the Boussinesq approximation for water waves is an approximation valid for weakly non-linear and fairly long waves. The approximation is named after Joseph Boussinesq, who first derived them in response to the observation by John Scott Russell of the wave of translation. The 1872 paper of Boussinesq introduces the equations now known as the Boussinesq equations.

<span class="mw-page-title-main">Stokes wave</span> Nonlinear and periodic surface wave on an inviscid fluid layer of constant mean depth

In fluid dynamics, a Stokes wave is a nonlinear and periodic surface wave on an inviscid fluid layer of constant mean depth. This type of modelling has its origins in the mid 19th century when Sir George Stokes – using a perturbation series approach, now known as the Stokes expansion – obtained approximate solutions for nonlinear wave motion.

In mathematical physics, the Hunter–Saxton equation

<span class="mw-page-title-main">Mild-slope equation</span> Physics phenomenon and formula

In fluid dynamics, the mild-slope equation describes the combined effects of diffraction and refraction for water waves propagating over bathymetry and due to lateral boundaries—like breakwaters and coastlines. It is an approximate model, deriving its name from being originally developed for wave propagation over mild slopes of the sea floor. The mild-slope equation is often used in coastal engineering to compute the wave-field changes near harbours and coasts.

Equatorial waves are oceanic and atmospheric waves trapped close to the equator, meaning that they decay rapidly away from the equator, but can propagate in the longitudinal and vertical directions. Wave trapping is the result of the Earth's rotation and its spherical shape which combine to cause the magnitude of the Coriolis force to increase rapidly away from the equator. Equatorial waves are present in both the tropical atmosphere and ocean and play an important role in the evolution of many climate phenomena such as El Niño. Many physical processes may excite equatorial waves including, in the case of the atmosphere, diabatic heat release associated with cloud formation, and in the case of the ocean, anomalous changes in the strength or direction of the trade winds.

The Mehler kernel is a complex-valued function found to be the propagator of the quantum harmonic oscillator.

<span class="mw-page-title-main">Trochoidal wave</span> Exact solution of the Euler equations for periodic surface gravity waves

In fluid dynamics, a trochoidal wave or Gerstner wave is an exact solution of the Euler equations for periodic surface gravity waves. It describes a progressive wave of permanent form on the surface of an incompressible fluid of infinite depth. The free surface of this wave solution is an inverted (upside-down) trochoid – with sharper crests and flat troughs. This wave solution was discovered by Gerstner in 1802, and rediscovered independently by Rankine in 1863.

<span class="mw-page-title-main">Averaged Lagrangian</span>

In continuum mechanics, Whitham's averaged Lagrangian method – or in short Whitham's method – is used to study the Lagrangian dynamics of slowly-varying wave trains in an inhomogeneous (moving) medium. The method is applicable to both linear and non-linear systems. As a direct consequence of the averaging used in the method, wave action is a conserved property of the wave motion. In contrast, the wave energy is not necessarily conserved, due to the exchange of energy with the mean motion. However the total energy, the sum of the energies in the wave motion and the mean motion, will be conserved for a time-invariant Lagrangian. Further, the averaged Lagrangian has a strong relation to the dispersion relation of the system.

Nonlinear tides are generated by hydrodynamic distortions of tides. A tidal wave is said to be nonlinear when its shape deviates from a pure sinusoidal wave. In mathematical terms, the wave owes its nonlinearity due to the nonlinear advection and frictional terms in the governing equations. These become more important in shallow-water regions such as in estuaries. Nonlinear tides are studied in the fields of coastal morphodynamics, coastal engineering and physical oceanography. The nonlinearity of tides has important implications for the transport of sediment.