Incoherent scatter

Last updated

Incoherent scattering is a type of scattering phenomenon in physics. The term is most commonly used when referring to the scattering of an electromagnetic wave (usually light or radio frequency) by random fluctuations in a gas of particles (most often electrons).

Contents

The most well known practical application is known as incoherent scatter radar theory, a ground-based technique for studying the Earth's ionosphere first proposed by Professor William E. Gordon in 1958. [1] A radar beam scattering off electrons in the ionospheric plasma creates an incoherent scatter return. When an electromagnetic wave is transmitted through the atmosphere, each of the electrons in the ionospheric plasma essentially acts as an antenna excited by the incoming wave, and the wave is re-radiated from the electron. Since the electrons are all moving at varying speeds as a result of ionospheric dynamics and random thermal motion, the reflection from each electron is also Doppler shifted. The receiver on the ground then receives a signal composed of the superposition of the re-radiated waves from all the electrons in the path of the incoming wave. Since the positively-charged ions also present in the ionosphere are orders of magnitude more massive, they are not as readily excited by the incoming electromagnetic wave in the way that the electrons are, so they do not re-radiate the signal. However, the electrons tend to remain close to the positively-charged ions. As a result, the distribution function of the ionospheric electrons is modified by the much slower and more massive positive ions — electron density fluctuations relate to ion temperature, mass distribution, and motion. The incoherent scatter signal allows measurement of electron density, ion temperature and electron temperatures, ion composition and plasma velocity.

Types of incoherent scatter radar observations

Electron Density

If there is a greater amount of electrons present in the ionosphere, then there will be more individually reflected electromagnetic waves which reach the receiver, corresponding to greater intensity of the echo at the receiver. Since the amount of energy reflected by an individual electron is known, the receiver can use the total intensity measured to determine the electron density in the selected region. [2]

Ion and Electron Temperature

Since each of the individual electrons and ions exhibits random thermal motion, the received echo will not be at the exact frequency it was transmitted. Instead, the signal will be composed of a range of frequencies near the original frequency, since it is the superposition of many individual Doppler-shifted reflections. The width of the range corresponds then to the temperature of the ionosphere. A higher temperature results in greater thermal velocity, which results in a larger Doppler shift and greater distribution in received frequency. However, it is important to note that the thermal behavior differs between electrons and ions. The ions are orders of magnitude more massive, and they do not interact with radiated heat in the same way that electrons do. As a result, the electron temperature and the Ion temperature differ.

Ion Drift

If the Ionospheric plasma is in motion as a whole, then there will also be an overall Doppler shift in the received data as well. This can be seen as a shift in the mean frequency, which reveals the overall Ion Drift in the Ionosphere.

Ionospheric Composition

See also

Related Research Articles

<span class="mw-page-title-main">Ionosphere</span> Ionized part of Earths upper atmosphere

The ionosphere is the ionized part of the upper atmosphere of Earth, from about 48 km (30 mi) to 965 km (600 mi) above sea level, a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation. It plays an important role in atmospheric electricity and forms the inner edge of the magnetosphere. It has practical importance because, among other functions, it influences radio propagation to distant places on Earth.

<span class="mw-page-title-main">Microwave</span> Electromagnetic radiation with wavelengths from 1 m to 1 mm

Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ranges as microwaves; the above broad definition includes both UHF and EHF bands. A more common definition in radio-frequency engineering is the range between 1 and 100 GHz. In all cases, microwaves include the entire SHF band at minimum. Frequencies in the microwave range are often referred to by their IEEE radar band designations: S, C, X, Ku, K, or Ka band, or by similar NATO or EU designations.

<span class="mw-page-title-main">Radar</span> Object detection system using radio waves

Radar is a radiolocation system that uses radio waves to determine the distance (ranging), angle, and radial velocity of objects relative to the site. It is used to detect and track aircraft, ships, spacecraft, guided missiles, and motor vehicles, and map weather formations, and terrain. A radar system consists of a transmitter producing electromagnetic waves in the radio or microwaves domain, a transmitting antenna, a receiving antenna and a receiver and processor to determine properties of the objects. Radio waves from the transmitter reflect off the objects and return to the receiver, giving information about the objects' locations and speeds.

<span class="mw-page-title-main">High-frequency Active Auroral Research Program</span> Project to analyze the ionosphere

The High-frequency Active Auroral Research Program (HAARP) was initiated as an ionospheric research program jointly funded by the U.S. Air Force, the U.S. Navy, the University of Alaska Fairbanks, and the Defense Advanced Research Projects Agency (DARPA). It was designed and built by BAE Advanced Technologies. Its original purpose was to analyze the ionosphere and investigate the potential for developing ionospheric enhancement technology for radio communications and surveillance. Since 2015 it has been operated by the University of Alaska Fairbanks.

<span class="mw-page-title-main">Radio wave</span> Type of electromagnetic radiation

Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 megahertz (MHz) and below. At 300 GHz, the corresponding wavelength is 1 mm ; at 30 Hz the corresponding wavelength is 10,000 kilometers. Like all electromagnetic waves, radio waves in a vacuum travel at the speed of light, and in the Earth's atmosphere at a close, but slightly lower speed. Radio waves are generated by charged particles undergoing acceleration, such as time-varying electric currents. Naturally occurring radio waves are emitted by lightning and astronomical objects, and are part of the blackbody radiation emitted by all warm objects.

<span class="mw-page-title-main">Whistler (radio)</span> Very low frequency EM waves generated by lightning

A whistler is a very low frequency (VLF) electromagnetic (radio) wave generated by lightning. Frequencies of terrestrial whistlers are 1 kHz to 30 kHz, with a maximum amplitude usually at 3 kHz to 5 kHz. Although they are electromagnetic waves, they occur at audio frequencies, and can be converted to audio using a suitable receiver. They are produced by lightning strikes where the impulse travels along the Earth's magnetic field lines from one hemisphere to the other. They undergo dispersion of several kHz due to the slower velocity of the lower frequencies through the plasma environments of the ionosphere and magnetosphere. Thus they are perceived as a descending tone which can last for a few seconds. The study of whistlers categorizes them into Pure Note, Diffuse, 2-Hop, and Echo Train types.

Plasma diagnostics are a pool of methods, instruments, and experimental techniques used to measure properties of a plasma, such as plasma components' density, distribution function over energy (temperature), their spatial profiles and dynamics, which enable to derive plasma parameters.

Plasma stealth is a proposed process to use ionized gas (plasma) to reduce the radar cross-section (RCS) of an aircraft. Interactions between electromagnetic radiation and ionized gas have been extensively studied for many purposes, including concealing aircraft from radar as stealth technology. Various methods might plausibly be able to form a layer or cloud of plasma around a vehicle to deflect or absorb radar, from simpler electrostatic or radio frequency discharges to more complex laser discharges. It is theoretically possible to reduce RCS in this way, but it may be very difficult to do so in practice. Some Russian systems e.g. the 3M22 Zircon (SS-N-33) and Kh-47M2 Kinzhal missiles have been reported to make use of plasma stealth.

<span class="mw-page-title-main">EISCAT</span> Radar systems used to study the interaction between the Sun and the Earth

EISCAT operates three incoherent scatter radar systems in Northern Scandinavia and Svalbard. The facilities are used to study the interaction between the Sun and the Earth as revealed by disturbances in the ionosphere and magnetosphere.

Polar mesospheric summer echoes (PMSE) is the phenomenon of anomalous radar echoes found between 80 and 90 km in altitude from May through early August in the Arctic, and from November through to February in the Antarctic. These strong radar echoes are associated with the extremely cold temperatures that occur above continental Antarctica during the summer. Rocket and radar measurements indicate that a partial reflection from a multitude of ion layers and constructive interference causes at least some of the PMSE.

<span class="mw-page-title-main">Madison Symmetric Torus</span>

The Madison Symmetric Torus (MST) is a reversed field pinch (RFP) physics experiment with applications to both fusion energy research and astrophysical plasmas.

<span class="mw-page-title-main">Haystack Observatory</span> American microwave observatory owned by MIT

Haystack Observatory is a multidisciplinary radio science center, ionospheric observatory, and astronomical microwave observatory owned by Massachusetts Institute of Technology (MIT). It is located in Westford, Massachusetts (US), approximately 45 kilometers (28 mi) northwest of Boston. Haystack was initially built by MIT's Lincoln Laboratory for the United States Air Force and was known as Haystack Microwave Research Facility. Construction began in 1960, and the antenna began operating in 1964. In 1970 the facility was transferred to MIT, which then formed the Northeast Radio Observatory Corporation (NEROC) with a number of other universities to operate the site as the Haystack Observatory. As of January 2012, a total of nine institutions participated in NEROC.

An ionospheric heater, or an ionospheric HF pump facility, is a powerful radio wave transmitter with an array of antennas which is used for research of plasma turbulence, the ionosphere and upper atmosphere. These transmitters operate in the high frequency (HF) range (3-30 MHz) at which radio waves are reflected from the ionosphere back to the ground. With such facilities a range of plasma turbulence phenomena can be excited in a semi-controlled fashion from the ground, during conditions when the ionosphere is naturally quiet and not perturbed by for example aurora. This stimulus-response type of research complements passive observations of naturally excited phenomena to learn about the ionosphere and upper atmosphere.

<span class="mw-page-title-main">Tor Hagfors</span> Norwegian physicist

Tor Hagfors was a Norwegian scientist, radio astronomer, radar expert and a pioneer in the studies of the interactions between electromagnetic waves and plasma. In the early 1960s he was one of a handful of pioneering theorists that independently developed a theory that explained the scattering of radio waves by the free electrons in a plasma and applied the result to the ionosphere. He became founding director of the new EISCAT facilities that were then under construction in 1975, by which time he already been director at most of the other incoherent scatter radar facilities in the world. The asteroid 1985 VD1 is named 7279 Hagfors after him.

This is an index to articles about terms used in discussion of radio propagation.

<span class="mw-page-title-main">Jicamarca Radio Observatory</span>

The Jicamarca Radio Observatory (JRO) is the equatorial anchor of the Western Hemisphere chain of Incoherent Scatter Radar (ISR) observatories extending from Lima, Peru to Søndre Strømfjord, Greenland. JRO is the premier scientific facility in the world for studying the equatorial ionosphere. The observatory is about half an hour drive inland (east) from Lima and 10 km from the Central Highway. The magnetic dip angle is about 1°, and varies slightly with altitude and year. The radar can accurately determine the direction of the Earth's magnetic field (B) and can be pointed perpendicular to B at altitudes throughout the ionosphere. The study of the equatorial ionosphere is rapidly becoming a mature field due, in large part, to the contributions made by JRO in radio science.

<span class="mw-page-title-main">Millstone Hill</span>

The Millstone Hill Steerable Antenna, or MISA, is a fully steerable dish antenna, 46 metres (151 ft) in diameter, designed by the Stanford Research Institute (SRI) in 1959. It is currently located at MIT Haystack Observatory in Westford, Massachusetts.

The index of physics articles is split into multiple pages due to its size.

The Farley–Buneman instability, or FB instability, is a microscopic plasma instability named after Donald T. Farley and Oscar Buneman. It is similar to the ionospheric Rayleigh-Taylor instability.

<span class="mw-page-title-main">Dynamics Explorer 2</span> NASA satellite of the Explorer program

Dynamics Explorer 2 was a NASA low-altitude mission, launched on 3 August 1981. It consisted of two satellites, DE-1 and DE-2, whose purpose was to investigate the interactions between plasmas in the magnetosphere and those in the ionosphere. The two satellites were launched together into polar coplanar orbits, which allowed them to simultaneously observe the upper and lower parts of the atmosphere.

References

  1. Gordon, W. (Nov 1958). "Incoherent Scattering of Radio Waves by Free Electrons with Applications to Space Exploration by Radar". Proceedings of the IRE . 46 (11): 1824–1829. doi:10.1109/JRPROC.1958.286852. S2CID   51635092.
  2. "Geospace".