The Lunar Magma Ocean (LMO) is the layer of molten rock that is theorized to have been present on the surface of the Moon. The LMO was likely present on the Moon from the time of the Moon's formation (about 4.5 or 4.4 billion years ago [1] ) to tens or hundreds of millions of years after that time. The LMO was a thermodynamic consequence of the Moon's relatively rapid formation in the aftermath of a giant impact between the proto-Earth and another planetary body. As the Moon accreted from the debris from the giant impact, gravitational potential energy was converted to thermal energy. Due to the rapid accretion of the Moon (in about a month to a year), [2] [3] [4] thermal energy was trapped since it did not have sufficient time to thermally radiate away energy through the lunar surface. The subsequent thermochemical evolution of the LMO explains the Moon's largely anorthositic crust, europium anomaly, and KREEP material.
The LMO was initially proposed by two groups in 1970 after they analyzed anorthositic rock fragments found in the Apollo 11 sample collection. [5] [6] Wood et al. used fragments of bulk sample 10085 for their analyses. [7] Ferroan anorthosite (FAN) rocks found during the Apollo program are composed primarily (over 90%) of the mineral plagioclase. [8] More specifically, FAN rocks found on the Moon consist of the calcium (Ca) end-member of plagioclase (i.e., anorthite). [9] This suggests that at least upper layers of the Moon were molten in the past due to the purity of lunar anorthosites and the fact that anorthite generally has a high crystallization temperature. [10]
There are three important parameters when considering the initial state of the LMO: chemical composition, depth, and temperature. These three parameters largely determine the thermochemical evolution. For the LMO, there are uncertainties associated with each of these initial conditions. A typical initial chemical composition is 47.1% SiO2, 33.1% MgO, 12.0% FeO, 4.0% Al2O3, and 3.0% CaO (with minor contributions from other molecules), along with an initial depth of 1,000 km and a basal temperature of 1,900 K. [16]
Initial chemical composition of the LMO is estimated based on the chemistry of lunar samples, along with the chemical composition and thickness of the current lunar crust. For computer modeling purposes, the initial chemical composition is typically defined by weight percent based on a system of basic molecules such as SiO2, MgO, FeO, Al2O3, and CaO. Seven example initial chemical compositions of the LMO from the literature are shown in the figure to the right. These compositions are generally similar to the composition of the Earth's mantle with the main difference being some (e.g., Taylor Whole Moon [11] ) or no enhancement (e.g., Lunar Primitive Upper Mantle [15] ) of refractory elements.
The estimated initial depth of the LMO varies from 100 km to the radius of the Moon. [20] [16] [21] [22]
The exact sequence of minerals that crystallize out of the LMO depends on its initial state (viz. chemical composition, depth, and temperature). Following the idealized Bowen's Reaction Series, olivine is generally expected to crystallize first, followed by orthopyroxene. These minerals are denser than the surrounding magma and thus sink towards the bottom of the LMO. As such, the LMO is initially expected to solidify from the bottom up. After about 80% of the LMO has crystallized, the mineral plagioclase crystallizes along with other minerals. Lunar rocks that are primarily made of plagioclase (i.e., anorthosite) form and float towards the surface of the Moon, making its primordial crust. [6]
The LMO may have lasted tens to hundreds of millions of years after the Moon's formation. The Moon is estimated to have formed between 52 and 152 million years after calcium-aluminum-rich inclusions (CAIs), the oldest known solids in the Solar System that serve as a proxy for its age of 4.567Ga. [1] The exact formation time of the LMO is somewhat uncertain.
End points may be indicated by the age of FAN sample 60025 (4.360±0.003 Ga) and the estimated age of ur-KREEP (4.368±0.029 Ga). [23] If the Moon formed early (i.e., 52 million years after Solar System formation) and both samples indicate full LMO crystallization, then the LMO would have lasted for about 155 million years. In this case, computer models show that one or more heat sources (such as tidal heating) are required to prolong crystallization of the LMO. [24] [25]
If the Moon formed late (i.e., 152 million years after Solar System formation) then again using the FAN sample 60025's age and the estimated age of ur-KREEP, the LMO lasted for about 55 million years. Meaning the LMO was not prolonged by one or more additional heat sources.
In the past, the age difference between the oldest and youngest FAN samples were used to determine the duration of the LMO. This was problematic due to the large errors of sample ages and due to some sample ages being reset by impacts. For instance, the oldest FAN sample is 67016 with a Sm-Nd age of 4.56±0.07 Ga [26] and the youngest is 62236 with a Sm-Nd age of 4.29±0.06 Ga. [27] The difference between these ages is 270 million years. This would again mean that the LMO had an additional heat source, such as tidal heating. [24]
Zircon analysis of Apollo 14 samples suggests the lunar crust differentiated 4.51±0.01 billion years ago, indicating lunar formation 50 million years after the beginning of the Solar System. [28]
One of the alternative models to the LMO model is the Serial Magmatism model. [29] [30]
Apatite is a group of phosphate minerals, usually hydroxyapatite, fluorapatite and chlorapatite, with high concentrations of OH−, F− and Cl− ion, respectively, in the crystal. The formula of the admixture of the three most common endmembers is written as Ca10(PO4)6(OH,F,Cl)2, and the crystal unit cell formulae of the individual minerals are written as Ca10(PO4)6(OH)2, Ca10(PO4)6F2 and Ca10(PO4)6Cl2.
In geology, the crust is the outermost solid shell of a planet, dwarf planet, or natural satellite. It is usually distinguished from the underlying mantle by its chemical makeup; however, in the case of icy satellites, it may be distinguished based on its phase.
Anorthosite is a phaneritic, intrusive igneous rock characterized by its composition: mostly plagioclase feldspar (90–100%), with a minimal mafic component (0–10%). Pyroxene, ilmenite, magnetite, and olivine are the mafic minerals most commonly present.
A micrometeorite is a micrometeoroid that has survived entry through the Earth's atmosphere. Usually found on Earth's surface, micrometeorites differ from meteorites in that they are smaller in size, more abundant, and different in composition. The IAU officially defines meteoroids as 30 micrometers to 1 meter; micrometeorites are the small end of the range (~submillimeter). They are a subset of cosmic dust, which also includes the smaller interplanetary dust particles (IDPs).
The Genesis Rock is a sample of Moon rock retrieved by Apollo 15 astronauts James Irwin and David Scott in 1971 during the second lunar EVA, at Spur crater on Earth's Moon. With a mass of c. 270 grams, it is currently stored at the Lunar Sample Laboratory Facility in Houston, Texas.
Meteoritics is the science that deals with meteors, meteorites, and meteoroids. It is closely connected to cosmochemistry, mineralogy and geochemistry. A specialist who studies meteoritics is known as a meteoriticist.
Moon rock or lunar rock is rock originating from Earth's Moon. This includes lunar material collected during the course of human exploration of the Moon, and rock that has been ejected naturally from the Moon's surface and landed on Earth as meteorites.
Paul Werner Gast was an American geochemist and geologist.
A layered intrusion is a large sill-like body of igneous rock which exhibits vertical layering or differences in composition and texture. These intrusions can be many kilometres in area covering from around 100 km2 (39 sq mi) to over 50,000 km2 (19,000 sq mi) and several hundred metres to over one kilometre (3,300 ft) in thickness. While most layered intrusions are Archean to Proterozoic in age, they may be any age such as the Cenozoic Skaergaard intrusion of east Greenland or the Rum layered intrusion in Scotland. Although most are ultramafic to mafic in composition, the Ilimaussaq intrusive complex of Greenland is an alkalic intrusion.
The oldest dated rocks formed on Earth, as an aggregate of minerals that have not been subsequently broken down by erosion or melted, are more than 4 billion years old, formed during the Hadean Eon of Earth's geological history, and mark the start of the Archean Eon, which is defined to start with the formation of the oldest intact rocks on Earth.
Compatibility is a term used by geochemists to describe how elements partition themselves in the solid and melt within Earth's mantle. In geochemistry, compatibility is a measure of how readily a particular trace element substitutes for a major element within a mineral.
Having a mean density of 3,346.4 kg/m3, the Moon is a differentiated body, being composed of a geochemically distinct crust, mantle, and planetary core. This structure is believed to have resulted from the fractional crystallization of a magma ocean shortly after its formation about 4.5 billion years ago. The energy required to melt the outer portion of the Moon is commonly attributed to a giant impact event that is postulated to have formed the Earth-Moon system, and the subsequent reaccretion of material in Earth orbit. Crystallization of this magma ocean would have given rise to a mafic mantle and a plagioclase-rich crust.
Robert Norman Clayton was a Canadian-American chemist and academic. He was the Enrico Fermi Distinguished Service Professor Emeritus of Chemistry at the University of Chicago. Clayton studied cosmochemistry and held a joint appointment in the university's geophysical sciences department. He was a member of the National Academy of Sciences and was named a fellow of several academic societies, including the Royal Society.
Magma oceans are vast fields of surface magma that exist during periods of a planet's or some natural satellite's accretion when the celestial body is completely or partly molten.
Hadean zircon is the oldest-surviving crustal material from the Earth's earliest geological time period, the Hadean eon, about 4 billion years ago. Zircon is a mineral that is commonly used for radiometric dating because it is highly resistant to chemical changes and appears in the form of small crystals or grains in most igneous and metamorphic host rocks.
Carbonate-associated sulfates (CAS) are sulfate species found in association with carbonate minerals, either as inclusions, adsorbed phases, or in distorted sites within the carbonate mineral lattice. It is derived primarily from dissolved sulfate in the solution from which the carbonate precipitates. In the ocean, the source of this sulfate is a combination of riverine and atmospheric inputs, as well as the products of marine hydrothermal reactions and biomass remineralisation. CAS is a common component of most carbonate rocks, having concentrations in the parts per thousand within biogenic carbonates and parts per million within abiogenic carbonates. Through its abundance and sulfur isotope composition, it provides a valuable record of the global sulfur cycle across time and space.
Toshiko K. Mayeda was a Japanese American chemist who worked at the Enrico Fermi Institute in the University of Chicago. She worked on climate science and meteorites from 1958 to 2004.
Hafnium–tungsten dating is a geochronological radiometric dating method utilizing the radioactive decay system of hafnium-182 to tungsten-182. The half-life of the system is 8.9±0.1 million years. Today hafnium-182 is an extinct radionuclide, but the hafnium–tungsten radioactive system is useful in studies of the early Solar system since hafnium is lithophilic while tungsten is moderately siderophilic, which allows the system to be used to date the differentiation of a planet's core. It is also useful in determining the formation times of the parent bodies of iron meteorites.
Ghislaine Crozaz is a cosmochemist known for her research on the early history of the solar system through tracking trace elements in meteorites.
Diamond inclusions are the non-diamond materials that get encapsulated inside diamond during its formation process in the mantle. The trapped materials can be other minerals or fluids like water. Since diamonds have high strength and low reactivity with either the inclusion or the volcanic host rocks which carry the diamond to the Earth's surface, the diamond serves as a container that preserves the included material intact under the changing conditions from the mantle to the surface. Although diamonds can only place a lower bound on the pressure of their formation, many inclusions provide additional constraints on the pressure, temperature and even age of formation.
{{cite book}}
: CS1 maint: location missing publisher (link)