Triton Hopper

Last updated
Triton Hopper
Triton Hopper.png
Artist's concept of the Triton Hopper
Mission typeReconnaissance
OperatorNASA
Spacecraft properties
Spacecraft typeRobotic
Dry mass500 kg [1]
Triton lander
 
Dark streaks across Triton's south polar cap surface, thought to be dust deposits left by eruptions of nitrogen geysers Voyager 2 Triton 14bg r90ccw colorized.jpg
Dark streaks across Triton's south polar cap surface, thought to be dust deposits left by eruptions of nitrogen geysers

Triton Hopper is a proposed NASA lander to Triton, the largest moon of Neptune. [2] The idea is to harvest the abundant nitrogen ice on the surface of Triton and use it as propellant for multiple short flights and explore a variety of locations. The concept transitioned in March 2018 to Phase II to refine their designs and explore aspects of implementing the new technology.

Contents

History

Triton is the largest moon of Neptune. In 1989, Voyager 2 flew past the moon at a distance of 40,000 km, [3] and discovered several cryovolcanoes on its surface. Triton is geologically active; its surface is young and has relatively few impact craters. It has a very thin atmosphere.

The Triton Hopper concept started Phase I in 2015, and it transitioned in March 2018 to Phase II, where the new technologies are being matured by NASA's Institute for Advanced Concepts (NIAC). [4] [5]

Overview

The Triton Hopper concept proposes the use of a radioisotope rocket engine that would collect nitrogen ice on or below the surface, heat it under pressure and use it as propellant to explore Neptune's moon Triton. [5] [6] The largest technological challenge is to learn how to mine local surface nitrogen ice, and how to heat it for use as propellant. [5] The rocket-powered hops are estimated to be up to 1 km high and 5 km long. [7] [8]

A rocket-powered vehicle, or "hopper", has several advantages due to the variety of terrain and a gravity of only 8% of that of Earth. Hemispheric traverses and atmospheric sampling are possible during hops. [2]

While airborne, the craft could acquire images and videos during flight. While on the ground, it could photograph and analyze the chemistry and geology of the surface. It could potentially fly through geysers on Triton's surface to analyze the material ejected from them. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Kuiper belt</span> Area of the Solar System beyond the planets, comprising small bodies

The Kuiper belt is a circumstellar disc in the outer Solar System, extending from the orbit of Neptune at 30 astronomical units (AU) to approximately 50 AU from the Sun. It is similar to the asteroid belt, but is far larger—20 times as wide and 20–200 times as massive. Like the asteroid belt, it consists mainly of small bodies or remnants from when the Solar System formed. While many asteroids are composed primarily of rock and metal, most Kuiper belt objects are composed largely of frozen volatiles, such as methane, ammonia, and water. The Kuiper belt is home to most of the objects that astronomers generally accept as dwarf planets: Orcus, Pluto, Haumea, Quaoar, and Makemake. Some of the Solar System's moons, such as Neptune's Triton and Saturn's Phoebe, may have originated in the region.

<span class="mw-page-title-main">Nereid (moon)</span> Moon of Neptune

Nereid, or Neptune II, is the third-largest moon of Neptune. It has the most eccentric orbit of all known moons in the Solar System. It was the second moon of Neptune to be discovered, by Gerard Kuiper in 1949.

A trans-Neptunian object (TNO), also written transneptunian object, is any minor planet in the Solar System that orbits the Sun at a greater average distance than Neptune, which has an orbital semi-major axis of 30.1 astronomical units (au).

<span class="mw-page-title-main">Triton (moon)</span> Largest moon of Neptune

Triton is the largest natural satellite of the planet Neptune. It is the only moon of Neptune massive enough to be rounded under its own gravity, and orbits Neptune with a retrograde orbit—an orbit in the direction opposite to its planet's rotation—the only large moon in the Solar System to do so. Because of its retrograde orbit and composition similar to Pluto, Triton is thought to have been a dwarf planet, captured from the Kuiper belt. Triton hosts a thin but well-structured atmosphere, composed primarily of nitrogen and hosting a layer of clouds.

<span class="mw-page-title-main">Pluto</span> Dwarf planet

Pluto is a dwarf planet in the Kuiper belt, a ring of bodies beyond the orbit of Neptune. It is the ninth-largest and tenth-most-massive known object to directly orbit the Sun. It is the largest known trans-Neptunian object by volume, by a small margin, but is less massive than Eris. Like other Kuiper belt objects, Pluto is made primarily of ice and rock and is much smaller than the inner planets. Pluto has roughly one-sixth the mass of Earth's moon, and one-third its volume.

<span class="mw-page-title-main">Geoffrey A. Landis</span> American aerospace engineer (born 1955)

Geoffrey Alan Landis is an American aerospace engineer and author, working for the National Aeronautics and Space Administration (NASA) on planetary exploration, interstellar propulsion, solar power and photovoltaics. He holds nine patents, primarily in the field of improvements to solar cells and photovoltaic devices and has given presentations and commentary on the possibilities for interstellar travel and construction of bases on the Moon, Mars, and Venus.

<span class="mw-page-title-main">Moons of Neptune</span> Natural satellites of the planet Neptune

The planet Neptune has 16 known moons, which are named for minor water deities and a water creature in Greek mythology. By far the largest of them is Triton, discovered by William Lassell on October 10, 1846, 17 days after the discovery of Neptune itself. Over a century passed before the discovery of the second natural satellite, Nereid, in 1949, and another 40 years passed before Proteus, Neptune's second-largest moon, was discovered in 1989.

<span class="mw-page-title-main">Interstellar probe</span> Space probe that can travel out of the Solar System

An interstellar probe is a space probe that has left—or is expected to leave—the Solar System and enter interstellar space, which is typically defined as the region beyond the heliopause. It also refers to probes capable of reaching other star systems.

<span class="mw-page-title-main">NASA Institute for Advanced Concepts</span> NASA program

The NASA Institute for Advanced Concepts (NIAC) is a NASA program for development of far reaching, long term advanced concepts by "creating breakthroughs, radically better or entirely new aerospace concepts". The program operated under the name NASA Institute for Advanced Concepts from 1998 until 2007, and was reestablished in 2011 under the name NASA Innovative Advanced Concepts and continues to the present. The NIAC program funds work on revolutionary aeronautics and space concepts that can dramatically impact how NASA develops and conducts its missions.

<span class="mw-page-title-main">Exploration of Neptune</span> Overview of the exploration of Neptune

Neptune has been directly explored by one space probe, Voyager 2, in 1989. As of 2024, there are no confirmed future missions to visit the Neptunian system, although a tentative Chinese mission has been planned for launch in 2024. NASA, ESA, and independent academic groups have proposed future scientific missions to visit Neptune. Some mission plans are still active, while others have been abandoned or put on hold.

<span class="mw-page-title-main">Atmosphere of Triton</span> Layer of gasses surrounding the moon Triton

The atmosphere of Triton is the layer of gases surrounding Triton. Like the atmospheres of Titan and Pluto, Triton's atmosphere is composed primarily of nitrogen, with a smaller component of methane. It hosts a layer of organic haze extending up to 30 kilometers above its surface and a deck of thin bright clouds at about 4 kilometers in altitude. Due to Triton's low gravity, its atmosphere is loosely bound, extending over 800 kilometers from its surface.

<span class="mw-page-title-main">Neptune</span> Eighth planet from the Sun

Neptune is the eighth and farthest known planet from the Sun. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 times the mass of Earth, and slightly more massive than fellow ice giant Uranus. Neptune is denser and physically smaller than Uranus because its greater mass causes more gravitational compression of its atmosphere. Being composed primarily of gases and liquids, it has no well-defined solid surface. The planet orbits the Sun once every 164.8 years at an orbital distance of 30.1 astronomical units. It is named after the Roman god of the sea and has the astronomical symbol , representing Neptune's trident.

<span class="mw-page-title-main">Exploration of Pluto</span> Overview of the exploration of Pluto

The exploration of Pluto began with the arrival of the New Horizons probe in July 2015, though proposals for such a mission had been studied for many decades. There are no plans as yet for a follow-up mission, though follow-up concepts have been studied.

<span class="mw-page-title-main">Uranus Orbiter and Probe</span> Proposed NASA space mission to Uranus

The Uranus Orbiter and Probe is an orbiter mission concept to study Uranus and its moons. The orbiter would also deploy an atmospheric probe to characterize Uranus's atmosphere. The concept is being developed as a potential large strategic science mission for NASA. The science phase would last 4.5 years and include multiple flybys of each of the major moons.

<span class="mw-page-title-main">Mars Geyser Hopper</span> Proposed robotic mission to explore carbon dioxide geysers on Mars

The Mars Geyser Hopper (MGH) was proposed in 2012 as a NASA design reference mission for a Discovery-class spacecraft concept that would investigate the springtime carbon dioxide Martian geysers found in regions around the south pole of Mars.

<i>Argo</i> (NASA spacecraft) 2009 NASA spacecraft mission concept

Argo was a 2009 spacecraft mission concept by NASA to the outer planets and beyond. The concept included flybys of Jupiter, Saturn, Neptune, and a Kuiper belt object. A focus on Neptune and its largest moon Triton would have helped answer some of the questions generated by Voyager 2's flyby in 1989, and would have provided clues to ice giant formation and evolution.

<i>Trident</i> (spacecraft) NASA space probe proposal to study the ice giant planet Neptune and its moon Triton

Trident is a space mission concept to the outer planets proposed in 2019 to NASA's Discovery Program. The concept includes flybys of Jupiter and Neptune with a focus on Neptune's largest moon Triton.

<span class="mw-page-title-main">Neptune Odyssey</span> NASA orbiter mission concept to study the Neptune system

Neptune Odyssey is an orbiter mission concept to study Neptune and its moons, particularly Triton. The orbiter would enter into a retrograde orbit of Neptune to facilitate simultaneous study of Triton and would launch an atmospheric probe to characterize Neptune's atmosphere. The concept is being developed as a potential large strategic science mission for NASA by a team led by the Applied Physics Laboratory at Johns Hopkins University. The current proposal targets a launch in 2033 using the Space Launch System with arrival at Neptune in 2049, although trajectories using gravity assists at Jupiter have also been considered with launch dates in 2031.

Shensuo, formerly Interstellar Express is a proposed Chinese National Space Administration program designed to explore the heliosphere and interstellar space. The program will feature two or three space probes that will purportedly be launched in 2024 and follow differing trajectories to encounter Jupiter to assist them out of the Solar System. The first probe, IHP-1, will travel toward the nose of the heliosphere, while the second probe, IHP-2, will fly near to the tail, skimming by Neptune and Triton in January 2038. There may be another probe—tentatively IHP-3—which would launch in 2030 to explore to the northern half of the heliosphere. IHP-1 and IHP-2 would be the sixth and seventh spacecraft to leave the Solar System, as well as first non-NASA probes to achieve this status.

<span class="mw-page-title-main">Geology of Triton</span> Geologic structure and composition of Triton

The geology of Triton encompasses the physical characteristics of the surface, internal structure, and geological history of Neptune's largest moon Triton. With a mean density of 2.061 g/cm3, Triton is roughly 15-35% water ice by mass; Triton is a differentiated body, with an icy solid crust atop a probable subsurface ocean and a rocky core. As a result, Triton's surface geology is largely driven by the dynamics of water ice and other volatiles such as nitrogen and methane. Triton's geology is vigorous, and has been and continues to be influenced by its unusual history of capture, high internal heat, and its thin but significant atmosphere.

References

  1. Iannotta, Ben (13 January 2017). "NASA's Far-Out Space Concepts". American Institute of Aeronautics and Astronautics. Archived from the original on 29 September 2017. Retrieved 29 September 2017.
  2. 1 2 Steven Oleson (7 May 2015). "Triton Hopper: Exploring Neptune's Captured Kuiper Belt Object". NASA Glenn Research Center. Retrieved 11 February 2017.
  3. Gray, D (1989). "Voyager 2 Neptune navigation results". Astrodynamics Conference: 108. doi:10.2514/6.1990-2876.
  4. Triton Hopper: Exploring Neptune's Captured Kuiper Belt Object. Steven Oleson, NASA Glenn Research Center. 30 March 2018.
  5. 1 2 3 Ferreira, Becky (August 28, 2015). "Why We Should Use This Jumping Robot to Explore Neptune". Vice Motherboard . Retrieved 11 February 2017.
  6. Machado-Rodriguez, Jonathan; Landis, Geoffrey A. (2017). "Analysis of a Radioisotope Thermal Rocket Engine". 55th AIAA Aerospace Sciences Meeting. doi:10.2514/6.2017-1445. hdl: 2060/20170006624 . ISBN   978-1-62410-447-3.
  7. Charles Q. Choi (17 May 2016). "This Jumping Probe Might Explore Neptune's Biggest Moon". Popular Science. Archived from the original on 8 November 2020. Retrieved 11 February 2017.
  8. Oleson, Steven R.; Landis, Geoffrey. "Triton Hopper: Exploring Neptune's Captured Kuiper Belt Object" (PDF). Planetary Science Vision 2050 Workshop 2017.
  9. Kasprak, Alex (24 June 2016). "A Mission To Neptune's Moon Triton Would Be Pretty Cool". Now.Space. Archived from the original on 2016-06-25. Retrieved 11 February 2017.