MUSE (spacecraft)

Last updated

Understanding why Uranus emits such a small amount of heat can only be done in the context of thermodynamic modeling of the atmosphere (density, pressure, and temperature). Therefore, the atmosphere needs to be characterized from both a composition and a thermodynamic point of view. [2] The chemical information to retrieve is the elemental concentrations, especially of disequilibrium species, isotopic ratios and noble gases, in combination with information regarding the distribution of aerosol particles with depth.

Twenty days before entry, the atmospheric probe would separate from the spacecraft and enter the outer atmosphere of Uranus at an altitude of 700 km at 21.8 km/s. It would descend by free fall and perform atmospheric measurements for about 90 minutes down to a maximum of 100 bars (1,500 psi) pressure. [2] [4]

Proposed instruments

The total mass budget for scientific instruments is 150 kg (330 lb); if all of proposed instruments are selected, they would sum a total payload mass of 108.4 kg (239 lb). In the table below, a green background denotes instruments to go on the entry probe; the rest are for the orbiter. [4]

Mission to Uranus for Science and Exploration (MUSE)
Mission typeReconnaissance, atmospheric probe
Operator European Space Agency [1]
Spacecraft properties
SpacecraftMUSE
Launch mass4,219 kg (9,301 lb) [2]
Dry mass2,073 kg (4,570 lb)
Payload massOrbiter: 252 kg (556 lb)
Probe: 150 kg (330 lb) [3]
Dimensionscylindrical bus 3 m × 1.6 m [3]
Power436 W
Li-ion batteries: 3,376 Wh
Generator: four ASRGs
Start of mission
Launch dateSeptember 2026 (proposed)
November 2029 (if delayed)
Rocket Ariane 6 (proposed)
Uranus orbiter
Orbital insertion2044 (proposed)
2049 (if delayed)
Orbits36
InstrumentDescriptionDimension, range, resolutionHeritage
VINIRS Visible and Near Infrared Spectrometer Electromagnetic radiation:
λ: 0.25–5  μm
96 bands (1.8  nm per band)
Dawn VIR
IRS Thermal Infrared Spectrometer Electromagnetic radiation:
λ: 7.16–16.67 μm
1×10 array of 0.273  mrad squares
Cassini CIRS
UVISUltraviolet Imaging SpectrographElectromagnetic radiation:
λ: 55.8–190 nm
Cassini UVIS
RPWRadio and Plasma Wave InstrumentElectromagnetic radiation and plasma waves:
1  Hz–16 MHz (various channels)
Cassini RPWS
MAG Fluxgate Magnetometer Magnetic fields:
0–20000  nT
Dual 3-axis
<1 nT accuracy
Juno MAG
Swarm VFM
TELFATLF and ELF AntennaElectromagnetic radiation:
Schumann resonances
C/NOFS VEFI antennas
ICIIon Composition InstrumentPositive ions:
25  eV–40 keV (dE/E = 0.07)
Rosetta ICA [6]
IESIon and Electron Sensor Electrons and ions:
1 eV/e–22 keV/e (dE/E = 0.04)
Rosetta IES [6]
EPDEnergetic Particle Detector Particles (free solar wind and those contained in Van Allen radiation belts):
Protons: 15 keV–3 MeV
Alphas: 25 keV–3 MeV
CNO: 60 keV–30 MeV[ clarification needed ]
Electrons: 15 keV–1 MeV
New Horizons PEPSSI
NACNarrow Angle CameraElectromagnetic radiation:
350–1050 nm
6 μrad/pixel
Cassini ISS
WACWide Angle CameraElectromagnetic radiation:
350–1050 nm
60 μrad/pixel
Cassini ISS
RSERadio Science Experiment Allan variance of radio oscillators:
T = 100 s of 1×10−13
Transponders operating at S, X and Ka band
Cassini RSS
MWR Microwave Radiometer Electromagnetic radiation:
0.6–22 GHz
Gain up to 80  dB
Determines temperature profile down to 200  bar atmospheric pressure
Juno MWR
DCDust Analyzer Interplanetary dust particles:
10−15–10−9  kg
1–10 μm (radius)
Cassini CDA
New Horizons SDC
DWEDoppler Wind Experiment Velocity of wind:
Resolution of 1  m/s
Determines wind profile down to 20 bar atmospheric pressure
Huygens DWE
AP3Atmospheric Physical Properties PackageTemperature, pressure and density profiles:
Depth: 0–20 bar
Huygens HASI
GCMS Gas Chromatograph and Mass Spectrometer Atoms and compounds:
Heavy elements, noble gases, key isotopic ratios (H2/He, D/H, PH3, CO) and disequilibrium species
Huygens GCMS
AS & NEPAerosol Sampling System and Nephelometer Atmospheric particle size:
0.2–20 μm (radius)
Works at concentrations up to 1  cm³[ clarification needed ]
Huygens ACP
Galileo GPNE[ clarification needed ]

MUSE as new New Frontiers mission

In 2014, a paper was released considering MUSE under the constraints of an enhanced New Frontiers mission. This included a cost cap of US$1.5 billion, and one of the big differences was the use of an Atlas V 551 rocket. [3]

See also

Uranus mission proposals

References

  1. Kane, Van (25 September 2013). "Europe Will Select Its Next Major Science Mission in November". The Planetary Society. Retrieved 2016-03-31.
  2. 1 2 3 4 5 6 7 8 Costa, M.; Bocanegra, T.; Bracken, C.; et al. (June 2012). Mission to the Uranus System: MUSE. Unveiling the evolution and formation of icy giants (PDF). 2012 Post Alpbach Summer School. Madrid, Spain.
  3. 1 2 3 4 5 Saikia, S. J.; Daubar, I. J.; et al. (2014). A new frontiers mission concept for the exploration of Uranus (PDF). 45th Lunar and Planetary Science Conference.
  4. 1 2 3 4 5 6 7 8 Bocanegra-Bahamón, Tatiana (2015). "MUSE Mission to the Uranian System: Unveiling the evolution and formation of ice giants" (PDF). Advances in Space Research. 55 (9): 2190–2216. Bibcode:2015AdSpR..55.2190B. doi:10.1016/j.asr.2015.01.037.
  5. Bocanegra-Bahamón, Tatiana; Bracken, Colm; Costa Sitjà, Marc; Dirkx, Dominic; Gerth, Ingo; Konstantinidis, Kostas; Labrianidis, Christos; Laneuville, Matthieu; Luntzer, Armin (2015-05-01). "MUSE – Mission to the Uranian system: Unveiling the evolution and formation of ice giants". Advances in Space Research. 55 (9): 2190–2216. Bibcode:2015AdSpR..55.2190B. doi:10.1016/j.asr.2015.01.037. ISSN   0273-1177.
  6. 1 2 "Rosetta Orbiter Instruments". ESA. Retrieved 5 March 2023.