# Flicker noise

Last updated

Flicker noise is a type of electronic noise with a 1/f power spectral density. It is therefore often referred to as 1/f noise or pink noise , though these terms have wider definitions. It occurs in almost all electronic devices and can show up with a variety of other effects, such as impurities in a conductive channel, generation and recombination noise in a transistor due to base current, and so on.

## Properties

1/f noise in current or voltage is usually related to a direct current, as resistance fluctuations are transformed to voltage or current fluctuations by Ohm's law. There is also a 1/f component in resistors with no direct current through them, likely due to temperature fluctuations modulating the resistance. This effect is not present in manganin, as it has negligible temperature coefficient of resistance. [1] [2]

In electronic devices, it shows up as a low-frequency phenomenon, as the higher frequencies are overshadowed by white noise from other sources. In oscillators, however, the low-frequency noise can be mixed up to frequencies close to the carrier, which results in oscillator phase noise.

Flicker noise is often characterized by the corner frequency fc between the region dominated by the low-frequency flicker noise and the higher-frequency "flat-band" noise. MOSFETs have a higher fc (can be in the GHz range) than JFETs or bipolar transistors, which is usually below 2 kHz for the latter.

It typically has a Gaussian distribution and is time-reversible. [3] It is generated by a linear mechanism in resistors and FETs, but a non-linear mechanism in BJTs and diodes. [3]

The flicker-noise voltage power in MOSFET is often modeled as ${\displaystyle {\tfrac {K}{C_{\text{ox}}\cdot WLf}}}$, where K is the process-dependent constant, ${\displaystyle C_{\text{ox}}}$ is the oxide capacitance in MOSFET devices, W and L are channel width and length respectively. [4] This is an empirical model and generally thought to be an oversimplification. [5]

Flicker noise is found in carbon-composition resistors and in thick-film resistors, [6] where it is referred to as excess noise, since it increases the overall noise level above the thermal noise level, which is present in all resistors. In contrast, wire-wound resistors have the least amount of flicker noise. Since flicker noise is related to the level of DC, if the current is kept low, thermal noise will be the predominant effect in the resistor, and the type of resistor used may not affect noise levels, depending on the frequency window.

## Measurement

The measurement of 1/f noise spectrum in voltage or current is done in the same way as the measurement of other types of noises. Sampling spectrum analyzers take a finite-time sample from the noise and calculate the Fourier transform by FFT algorithm. Then, after calculating the squared absolute value of the Fourier spectrum, they calculate its average value by repeating this sampling process by a sufficiently large number of times. The resulting pattern is proportional to the power-density spectrum of the measured noise. It is then normalized by the duration of the finite-time sample and also by a numerical constant in the order of 1 to get its exact value. This procedure gives correct spectral data only deeply within the frequency window determined by the reciprocal of the duration of the finite-time sample (low-frequency end) and the digital sampling rate of the noise (high-frequency end). Thus the upper and the lower half decades of the obtained power density spectrum are usually discarded from the spectrum. Conventional spectrum analyzers that sweep a narrow filtered band over the signal have good signal-to-noise ratio (SNR), since they are narrow-band instruments. Unfortunately, these instruments do not operate at frequencies low enough to fully measure flicker noise. Sampling instruments are broadband, and hence high noise. They reduce the noise by taking multiple sample traces and averaging them. Conventional spectrum analyzers still have better SNR due to their narrow-band acquisition.

## Removal in instrumentation and measurements

For DC measurements 1/f noise can be particularly troublesome, as it is very significant at low frequencies, tending to infinity with integration/averaging at DC. At very low frequencies, you can think of the noise as becoming drift, although the mechanisms causing drift are usually distinct from flicker noise.

One powerful technique involves moving the signal of interest to a higher frequency and using a phase-sensitive detector to measure it. For example, the signal of interest can be chopped with a frequency. Now the signal chain carries an AC, not DC, signal. AC-coupled stages filters out the DC component; this also attenuates the flicker noise. A synchronous detector that samples the peaks of the AC signal, which are equivalent to the original DC value. In other words, first the low-frequency signal is shifted to high frequency by multiplying it with high-frequency carrier, and it is given to the device affected by the flicker noise. The output of the device is again multiplied with the same carrier, so the previous information signal comes back to baseband, and flicker noise will be shifted to higher frequency, which can easily be filtered out.

## Related Research Articles

An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the power of a signal. It is a two-port electronic circuit that uses electric power from a power supply to increase the amplitude of a signal applied to its input terminals, producing a proportionally greater amplitude signal at its output. The amount of amplification provided by an amplifier is measured by its gain: the ratio of output voltage, current, or power to input. An amplifier is a circuit that has a power gain greater than one.

In signal processing, phase noise is the frequency-domain representation of random fluctuations in the phase of a waveform, corresponding to time-domain deviations from perfect periodicity ("jitter"). Generally speaking, radio-frequency engineers speak of the phase noise of an oscillator, whereas digital-system engineers work with the jitter of a clock.

Shot noise or Poisson noise is a type of noise which can be modeled by a Poisson process. In electronics shot noise originates from the discrete nature of electric charge. Shot noise also occurs in photon counting in optical devices, where shot noise is associated with the particle nature of light.

Pink noise or 1f noise is a signal or process with a frequency spectrum such that the power spectral density is inversely proportional to the frequency of the signal. In pink noise, each octave interval carries an equal amount of noise energy.

Pulse width modulation (PWM), or pulse-duration modulation (PDM), is a method of reducing the average power delivered by an electrical signal, by effectively chopping it up into discrete parts. The average value of voltage fed to the load is controlled by turning the switch between supply and load on and off at a fast rate. The longer the switch is on compared to the off periods, the higher the total power supplied to the load. Along with maximum power point tracking (MPPT), it is one of the primary methods of reducing the output of solar panels to that which can be utilized by a battery. PWM is particularly suited for running inertial loads such as motors, which are not as easily affected by this discrete switching, because their inertia causes them to react slowly. The PWM switching frequency has to be high enough not to affect the load, which is to say that the resultant waveform perceived by the load must be as smooth as possible.

Johnson–Nyquist noise is the electronic noise generated by the thermal agitation of the charge carriers inside an electrical conductor at equilibrium, which happens regardless of any applied voltage. Thermal noise is present in all electrical circuits, and in sensitive electronic equipment such as radio receivers can drown out weak signals, and can be the limiting factor on sensitivity of an electrical measuring instrument. Thermal noise increases with temperature. Some sensitive electronic equipment such as radio telescope receivers are cooled to cryogenic temperatures to reduce thermal noise in their circuits. The generic, statistical physical derivation of this noise is called the fluctuation-dissipation theorem, where generalized impedance or generalized susceptibility is used to characterize the medium.

The Schottky diode, also known as Schottky barrier diode or hot-carrier diode, is a semiconductor diode formed by the junction of a semiconductor with a metal. It has a low forward voltage drop and a very fast switching action. The cat's-whisker detectors used in the early days of wireless and metal rectifiers used in early power applications can be considered primitive Schottky diodes.

In electronics, a varicap diode, varactor diode, variable capacitance diode, variable reactance diode or tuning diode is a type of diode designed to exploit the voltage-dependent capacitance of a reverse-biased p–n junction.

A spectrum analyzer measures the magnitude of an input signal versus frequency within the full frequency range of the instrument. The primary use is to measure the power of the spectrum of known and unknown signals. The input signal that most common spectrum analyzers measure is electrical; however, spectral compositions of other signals, such as acoustic pressure waves and optical light waves, can be considered through the use of an appropriate transducer. Spectrum analyzers for other types of signals also exist, such as optical spectrum analyzers which use direct optical techniques such as a monochromator to make measurements.

An integrator in measurement and control applications is an element whose output signal is the time integral of its input signal. It accumulates the input quantity over a defined time to produce a representative output.

Photodetectors, also called photosensors, are sensors of light or other electromagnetic radiation. A photo detector has a p–n junction that converts light photons into current. The absorbed photons make electron–hole pairs in the depletion region. Photodiodes and photo transistors are a few examples of photo detectors. Solar cells convert some of the light energy absorbed into electrical energy.

An electrical ballast is a device placed in series with a load to limit the amount of current in an electrical circuit.

In electronics, noise is an unwanted disturbance in an electrical signal. Noise generated by electronic devices varies greatly as it is produced by several different effects.

In electronics, an LED circuit or LED driver is an electrical circuit used to power a light-emitting diode (LED). The circuit must provide sufficient current to light the LED at the required brightness, but must limit the current to prevent damaging the LED. The voltage drop across an LED is approximately constant over a wide range of operating current; therefore, a small increase in applied voltage greatly increases the current. Very simple circuits are used for low-power indicator LEDs. More complex, current source circuits are required when driving high-power LEDs for illumination to achieve correct current regulation.

In electronics, biasing is the setting of initial operating conditions of an active device in an amplifier. Many electronic devices, such as diodes, transistors and vacuum tubes, whose function is processing time-varying (AC) signals, also require a steady (DC) current or voltage at their terminals to operate correctly. This current or voltage is a bias. The AC signal applied to them is superpositioned on this DC bias current or voltage.

PMOS or pMOS logic is a family of digital circuits based on p-channel, enhancement mode metal–oxide–semiconductor field-effect transistors (MOSFETs). In the late 1960s and early 1970s, PMOS logic was the dominant semiconductor technology for large-scale integrated circuits before being superceded by NMOS and CMOS devices.

A memristor is a non-linear two-terminal electrical component relating electric charge and magnetic flux linkage. It was described and named in 1971 by Leon Chua, completing a theoretical quartet of fundamental electrical components which comprises also the resistor, capacitor and inductor.

A noise generator is a circuit that produces electrical noise. Noise generators are used to test signals for measuring noise figure, frequency response, and other parameters. Noise generators are also used for generating random numbers.

The following outline is provided as an overview of and topical guide to electronics:

In electrical engineering, current sensing is any one of several techniques used to measure electric current. The measurement of current ranges from picoamps to tens of thousands of amperes. The selection of a current sensing method depends on requirements such as magnitude, accuracy, bandwidth, robustness, cost, isolation or size. The current value may be directly displayed by an instrument, or converted to digital form for use by a monitoring or control system.

## References

1. Voss, Richard F.; Clarke, John (1976-01-15). "Flicker (1/f) noise: Equilibrium temperature and resistance fluctuations". Physical Review B. 13 (2): 556–573. Bibcode:1976PhRvB..13..556V. doi:10.1103/PhysRevB.13.556.
2. Beck, H. G. E.; Spruit, W. P. (1978-06-01). "1/f noise in the variance of Johnson noise". Journal of Applied Physics. 49 (6): 3384–3385. Bibcode:1978JAP....49.3384B. doi:10.1063/1.325240. ISSN   0021-8979.
3. Voss, Richard F. (1978-04-03). "Linearity of 1/f Noise Mechanisms". Physical Review Letters. 40 (14): 913–916. Bibcode:1978PhRvL..40..913V. doi:10.1103/physrevlett.40.913.
4. Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2000, Chapter 7: Noise.
5. Lundberg, Kent H. "Noise Sources in Bulk CMOS" (PDF).
6. Jenkins, Rick. "All the noise in resistors". Hartman Technica. Retrieved 5 June 2014.