Flicker noise is a type of electronic noise with a 1/f power spectral density. It is therefore often referred to as 1/f noise or pink noise , though these terms have wider definitions. It occurs in almost all electronic devices and can show up with a variety of other effects, such as impurities in a conductive channel, generation and recombination noise in a transistor due to base current, and so on.
1/f noise in current or voltage is usually related to a direct current, as resistance fluctuations are transformed to voltage or current fluctuations by Ohm's law. There is also a 1/f component in resistors with no direct current through them, likely due to temperature fluctuations modulating the resistance. This effect is not present in manganin, as it has negligible temperature coefficient of resistance. [1] [2]
In electronic devices, it shows up as a low-frequency phenomenon, as the higher frequencies are overshadowed by white noise from other sources. In oscillators, however, the low-frequency noise can be mixed up to frequencies close to the carrier, which results in oscillator phase noise.
Its contribution to total noise is characterized by the corner frequency fc between the low-frequency region dominated by flicker noise and the higher-frequency region dominated by the flat spectrum of white noise. MOSFETs have a high fc (can be in the GHz range). JFETs and BJTs have a lower fc around 1 kHz, [3] but JFETs usually exhibit more flicker noise at low frequencies than BJTs, and can have fc as high as several kHz in JFETs not selected for flicker noise. [4]
It typically has a Gaussian distribution [ dubious ] and is time-reversible. [5] It is generated by a linear mechanism in resistors and FETs, but by a non-linear mechanism in BJTs and diodes. [5]
The spectral density of flicker-noise voltage in MOSFETs as a function of frequency f is often modeled as , where K is the process-dependent constant, is the oxide capacitance, W and L are channel width and length respectively. [6] This is an empirical model and generally thought to be an oversimplification. [7]
Flicker noise is found in carbon-composition resistors and in thick-film resistors, [8] where it is referred to as excess noise, since it increases the overall noise level above the thermal noise level, which is present in all resistors. In contrast, wire-wound resistors have the least amount of flicker noise. Since flicker noise is related to the level of DC, if the current is kept low, thermal noise will be the predominant effect in the resistor, and the type of resistor used may not affect noise levels, depending on the frequency window.
The measurement of 1/f noise spectrum in voltage or current is done in the same way as the measurement of other types of noises. Sampling spectrum analyzers take a finite-time sample from the noise and calculate the Fourier transform by FFT algorithm. Then, after calculating the squared absolute value of the Fourier spectrum, they calculate its average value by repeating this sampling process by a sufficiently large number of times. The resulting pattern is proportional to the power-density spectrum of the measured noise. It is then normalized by the duration of the finite-time sample and also by a numerical constant in the order of 1 to get its exact value. This procedure gives correct spectral data only deeply within the frequency window determined by the reciprocal of the duration of the finite-time sample (low-frequency end) and the digital sampling rate of the noise (high-frequency end). Thus the upper and the lower half decades of the obtained power density spectrum are usually discarded from the spectrum. Conventional spectrum analyzers that sweep a narrow filtered band over the signal have good signal-to-noise ratio (SNR), since they are narrow-band instruments. These instruments do not operate at frequencies low enough to fully measure flicker noise. Sampling instruments are broadband, and hence high noise. They reduce the noise by taking multiple sample traces and averaging them. Conventional spectrum analyzers still have better SNR due to their narrow-band acquisition.
For DC measurements 1/f noise can be particularly troublesome, as it is very significant at low frequencies, tending to infinity with integration/averaging at DC. At very low frequencies, you can think of the noise as becoming drift, although the mechanisms causing drift are usually distinct from flicker noise.
One powerful technique involves moving the signal of interest to a higher frequency and using a phase-sensitive detector to measure it. For example, the signal of interest can be chopped with a frequency. Now the signal chain carries an AC, not DC, signal. AC-coupled stages filters out the DC component; this also attenuates the flicker noise. A synchronous detector that samples the peaks of the AC signal, which are equivalent to the original DC value. In other words, first the low-frequency signal is shifted to high frequency by multiplying it with high-frequency carrier, and it is given to the device affected by the flicker noise. The output of the device is again multiplied with the same carrier, so the previous information signal comes back to baseband, and flicker noise will be shifted to higher frequency, which can easily be filtered out.
A transistor is a semiconductor device used to amplify or switch electrical signals and power. It is one of the basic building blocks of modern electronics. It is composed of semiconductor material, usually with at least three terminals for connection to an electronic circuit. A voltage or current applied to one pair of the transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Some transistors are packaged individually, but many more in miniature form are found embedded in integrated circuits. Because transistors are the key active components in practically all modern electronics, many people consider them one of the 20th century's greatest inventions.
In signal processing, phase noise is the frequency-domain representation of random fluctuations in the phase of a waveform, corresponding to time-domain deviations from perfect periodicity (jitter). Generally speaking, radio-frequency engineers speak of the phase noise of an oscillator, whereas digital-system engineers work with the jitter of a clock.
Shot noise or Poisson noise is a type of noise which can be modeled by a Poisson process.
Pink noise, 1⁄f noise, fractional noise or fractal noise is a signal or process with a frequency spectrum such that the power spectral density is inversely proportional to the frequency of the signal. In pink noise, each octave interval carries an equal amount of noise energy.
Pulse-width modulation (PWM), also known as pulse-duration modulation (PDM) or pulse-length modulation (PLM), is any method of representing a signal as a rectangular wave with a varying duty cycle.
Johnson–Nyquist noise is the electronic noise generated by the thermal agitation of the charge carriers inside an electrical conductor at equilibrium, which happens regardless of any applied voltage. Thermal noise is present in all electrical circuits, and in sensitive electronic equipment can drown out weak signals, and can be the limiting factor on sensitivity of electrical measuring instruments. Thermal noise increases with temperature. Some sensitive electronic equipment such as radio telescope receivers are cooled to cryogenic temperatures to reduce thermal noise in their circuits. The generic, statistical physical derivation of this noise is called the fluctuation-dissipation theorem, where generalized impedance or generalized susceptibility is used to characterize the medium.
In signal processing, the power spectrum of a continuous time signal describes the distribution of power into frequency components composing that signal. According to Fourier analysis, any physical signal can be decomposed into a number of discrete frequencies, or a spectrum of frequencies over a continuous range. The statistical average of any sort of signal as analyzed in terms of its frequency content, is called its spectrum.
The Schottky diode, also known as Schottky barrier diode or hot-carrier diode, is a semiconductor diode formed by the junction of a semiconductor with a metal. It has a low forward voltage drop and a very fast switching action. The cat's-whisker detectors used in the early days of wireless and metal rectifiers used in early power applications can be considered primitive Schottky diodes.
A spectrum analyzer measures the magnitude of an input signal versus frequency within the full frequency range of the instrument. The primary use is to measure the power of the spectrum of known and unknown signals. The input signal that most common spectrum analyzers measure is electrical; however, spectral compositions of other signals, such as acoustic pressure waves and optical light waves, can be considered through the use of an appropriate transducer. Spectrum analyzers for other types of signals also exist, such as optical spectrum analyzers which use direct optical techniques such as a monochromator to make measurements.
The Hartley oscillator is an electronic oscillator circuit in which the oscillation frequency is determined by a tuned circuit consisting of capacitors and inductors, that is, an LC oscillator. The circuit was invented in 1915 by American engineer Ralph Hartley. The distinguishing feature of the Hartley oscillator is that the tuned circuit consists of a single capacitor in parallel with two inductors in series, and the feedback signal needed for oscillation is taken from the center connection of the two inductors.
In electronics, a common-emitter amplifier is one of three basic single-stage bipolar-junction-transistor (BJT) amplifier topologies, typically used as a voltage amplifier. It offers high current gain, medium input resistance and a high output resistance. The output of a common emitter amplifier is inverted; i.e. for a sine wave input signal, the output signal is 180 degrees out of phase with respect to the input.
Photodetectors, also called photosensors, are sensors of light or other electromagnetic radiation. There are a wide variety of photodetectors which may be classified by mechanism of detection, such as photoelectric or photochemical effects, or by various performance metrics, such as spectral response. Semiconductor-based photodetectors typically use a p–n junction that converts photons into charge. The absorbed photons make electron–hole pairs in the depletion region. Photodiodes and photo transistors are a few examples of photo detectors. Solar cells convert some of the light energy absorbed into electrical energy.
An electrical ballast is a device placed in series with a load to limit the amount of current in an electrical circuit.
In electronics, noise is an unwanted disturbance in an electrical signal.
A test probe is a physical device used to connect electronic test equipment to a device under test (DUT). Test probes range from very simple, robust devices to complex probes that are sophisticated, expensive, and fragile. Specific types include test prods, oscilloscope probes and current probes. A test probe is often supplied as a test lead, which includes the probe, cable and terminating connector.
A noise generator is a circuit that produces electrical noise. Noise generators are used to test signals for measuring noise figure, frequency response, and other parameters. Noise generators are also used for generating random numbers.
The following outline is provided as an overview of and topical guide to electronics:
The field-effect transistor (FET) is a type of transistor that uses an electric field to control the flow of current in a semiconductor. It comes in two types: junction FET (JFET) and metal-oxide-semiconductor FET (MOSFET). FETs have three terminals: source, gate, and drain. FETs control the flow of current by the application of a voltage to the gate, which in turn alters the conductivity between the drain and source.
A voltage-controlled resistor (VCR) is a three-terminal active device with one input port and two output ports. The input-port voltage controls the value of the resistor between the output ports. VCRs are most often built with field-effect transistors (FETs). Two types of FETs are often used: the JFET and the MOSFET. There are both floating voltage-controlled resistors and grounded voltage-controlled resistors. Floating VCRs can be placed between two passive or active components. Grounded VCRs, the more common and less complicated design, require that one port of the voltage-controlled resistor be grounded.
Switching Noise Jitter (SNJ) is the aggregation of variability of noise events in the time-domain on the supply bias of an electronic system, in particular with a voltage regulated supply bias incorporated with closed-loop (feedback) control, for instance, SMPS. SNJ is measurable using real-time spectral histogram analysis and expressed as a rate of occurrence in percentage. The existence of SNJ was firstly demonstrated and termed by TransSiP Inc in 2016 and 2017 at the Applied Power Electronics Conference (APEC), and reviewed with experts at Tektronix prior to be featured as a case study published by Tektronix. The discovery of SNJ was also featured in multiple articles published by Planet Analog magazine and EDN Network. Difficult to filter using conventional LC networks due to variability in both time and frequency domains, SNJ can introduce random errors in analog to digital conversion, affecting both data integrity and system performance in digital communications and location-based services