Manganin

Last updated
Manganin
1900 Reichenstalt Pattern Resistor.jpg
A manganin resistor made in 1900 at the Bushy House physics laboratory.
Material typeCopper-manganese alloy
Physical properties
Density (ρ)8.4 g/cm3
Mechanical properties
Tensile strength (σt)300–600 MPa
Elongation (ε)at break <50%
Izod impact strength 107 J/m
Thermal properties
Melting temperature (Tm)1020 °C
Thermal conductivity (k) at 23 °C22 W/(m·K)
Linear thermal expansion coefficient (α)(14–19)×10−6 K−1
Specific heat capacity (c)0.097 cals/gm
Electrical properties
Volume resistivity (ρ)43–48 μΩ⋅cm
Source [1]

Manganin is a trademarked name for an alloy of typically 84.2% copper, 12.1% manganese, and 3.7% nickel. It was first developed by Edward Weston in 1892, improving upon his Constantan (1887).

Contents

Manganin foil and wire is used in the manufacture of resistors, particularly ammeter shunts, because of its virtually zero temperature coefficient of resistance value [2] and long term stability. Several Manganin resistors served as the legal standard for the ohm in the United States from 1901 to 1990. [3] Manganin wire is also used as an electrical conductor in cryogenic systems, minimizing heat transfer between points which need electrical connections.

Manganin is also used in gauges for studies of high-pressure shock waves (such as those generated from the detonation of explosives) because it has low strain sensitivity but high hydrostatic pressure sensitivity. [4]

History

In 1887 Edward Weston discovered that metals can have a negative temperature coefficient of resistance, inventing what he called his "Alloy No. 2." It was produced in Germany where it was renamed "Constantan". [5] In 1888 he patented [6] "an alloy containing from 65 to 70 parts of copper, 25 to 30 parts of ferro-manganese, and 2.5 to 10 parts of nickel" which had a nearly constant resistivity.

Manganin wire as we know it was developed by Weston's assistant John Forrest Kelly. [7] In May 1893, Weston received a patent[ citation needed ] for the material and its use for resistors. While Manganin represented a significant advance in technology -- the material was a conductive metal with constant resistance over a wide range of working temperatures, Weston did not receive wide recognition at the time. [8]

Properties

Cu86/Mn12/Ni2

Electrical Properties

Mechanical Properties

Cu84/Mn12/Ni4 [9]
Temperature [°C]coefficient of resistivity
12+.000006
25.000000
100−.000042
250−.000052
475.000000
500+.00011
Resistance of Wires at 20 °C [10]
AWG ohms per cmohms per ft
10.0008360.0255
12.001330.0405
14.002110.0644
16.003360.102
18.005350.163
20.008500.259
22.01350.412
24.02150.655
26.03421.04
27.04311.31
28.05431.66
30.08642.63
32.1374.19
34.2186.66
36.34710.6
40.87826.8

See also

Related Research Articles

<span class="mw-page-title-main">Resistor</span> Passive electrical component providing electrical resistance

A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active elements, and terminate transmission lines, among other uses. High-power resistors that can dissipate many watts of electrical power as heat may be used as part of motor controls, in power distribution systems, or as test loads for generators. Fixed resistors have resistances that only change slightly with temperature, time or operating voltage. Variable resistors can be used to adjust circuit elements, or as sensing devices for heat, light, humidity, force, or chemical activity.

<span class="mw-page-title-main">Thermocouple</span> Electrical device for measuring temperature via two dissimilar metals connected at two points

A thermocouple, also known as a "thermoelectrical thermometer", is an electrical device consisting of two dissimilar electrical conductors forming an electrical junction. A thermocouple produces a temperature-dependent voltage as a result of the Seebeck effect, and this voltage can be interpreted to measure temperature. Thermocouples are widely used as temperature sensors.

<span class="mw-page-title-main">Thermistor</span> Type of resistor whose resistance varies with temperature

A thermistor is a semiconductor type of resistor whose resistance is strongly dependent on temperature, more so than in standard resistors. The word thermistor is a portmanteau of thermal and resistor.

<span class="mw-page-title-main">Electrical resistance and conductance</span> Opposition to the passage of an electric current

The electrical resistance of an object is a measure of its opposition to the flow of electric current. Its reciprocal quantity is electrical conductance, measuring the ease with which an electric current passes. Electrical resistance shares some conceptual parallels with mechanical friction. The SI unit of electrical resistance is the ohm, while electrical conductance is measured in siemens (S).

<span class="mw-page-title-main">Brazing</span> Metal-joining technique

Brazing is a metal-joining process in which two or more metal items are joined by melting and flowing a filler metal into the joint, with the filler metal having a lower melting point than the adjoining metal.

<span class="mw-page-title-main">Strain gauge</span> Electronic component used to measure strain

A strain gauge is a device used to measure strain on an object. Invented by Edward E. Simmons and Arthur C. Ruge in 1938, the most common type of strain gauge consists of an insulating flexible backing which supports a metallic foil pattern. The gauge is attached to the object by a suitable adhesive, such as cyanoacrylate. As the object is deformed, the foil is deformed, causing its electrical resistance to change. This resistance change, usually measured using a Wheatstone bridge, is related to the strain by the quantity known as the gauge factor.

Nichrome is a family of alloys of nickel and chromium commonly used as resistance wire, heating elements in devices like toasters, electrical kettles and space heaters, in some dental restorations (fillings) and in a few other applications.

<span class="mw-page-title-main">Fernico</span>

Fernico describes a family of metal alloys made primarily of iron, nickel and cobalt. The family includes Kovar, FerNiCo I, FerNiCo II, and Dumet. The name is made up of the chemical symbols of its constituent three elements. "Dumet" is a portmanteau of "dual" and "metal," because it is a heterogeneous alloy, usually fabricated in the form of a wire with an alloy core and a copper cladding. These alloys possess the properties of electrical conductivity, minimal oxidation and formation of porous surfaces at working temperatures of glass and thermal coefficients of expansion which match glass closely. These requirements allow the alloys to be used in glass seals, such that the seal does not crack, fracture or leak with changes in temperature.

<span class="mw-page-title-main">Monel</span> Solid-solution binary alloy of nickel and copper

Monel is a group of alloys of nickel and copper, with small amounts of iron, manganese, carbon, and silicon. Monel is not a cupronickel alloy because it has less than 60% copper.

<span class="mw-page-title-main">Constantan</span> Alloy of copper and nickel

Constantan, also known in various contexts as Eureka, Advance, and Ferry, refers to a copper-nickel alloy commonly used for its stable electrical resistance across a wide range of temperatures. It usually consists of 55% copper and 45% nickel. Its main feature is the low thermal variation of its resistivity, which is constant over a wide range of temperatures. Other alloys with similarly low temperature coefficients are known, such as manganin.

A temperature coefficient describes the relative change of a physical property that is associated with a given change in temperature. For a property R that changes when the temperature changes by dT, the temperature coefficient α is defined by the following equation:

Resistance thermometers, also called resistance temperature detectors (RTDs), are sensors used to measure temperature. Many RTD elements consist of a length of fine wire wrapped around a heat-resistant ceramic or glass core but other constructions are also used. The RTD wire is a pure material, typically platinum (Pt), nickel (Ni), or copper (Cu). The material has an accurate resistance/temperature relationship which is used to provide an indication of temperature. As RTD elements are fragile, they are often housed in protective probes.

<span class="mw-page-title-main">Heating element</span> Device that converts electricity into heat

A heating element is a device used for conversion of electric energy into heat, consisting of a heating resistor and accessories. Heat is generated by the passage of electric current through a resistor through a process known as Joule Heating. Heating elements are used in household appliances, industrial equipment, and scientific instruments enabling them to perform tasks such as cooking, warming, or maintaining specific temperatures higher than the ambient.

A shunt is a device that is designed to provide a low-resistance path for an electrical current in a circuit. It is typically used to divert current away from a system or component in order to prevent overcurrent. Electrical shunts are commonly used in a variety of applications including power distribution systems, electrical measurement systems, automotive and marine applications.

The piezoresistive effect is a change in the electrical resistivity of a semiconductor or metal when mechanical strain is applied. In contrast to the piezoelectric effect, the piezoresistive effect causes a change only in electrical resistance, not in electric potential.

Resistance wire is wire intended for making electrical resistors. It is better if the alloy used has a high resistivity, since a shorter wire can then be used. In many situations, the stability of the resistor is of primary importance, and thus the alloy's temperature coefficient of resistivity and corrosion resistance play a large part in material selection.

<span class="mw-page-title-main">Mechanical filter</span> Type of signal processing filter

A mechanical filter is a signal processing filter usually used in place of an electronic filter at radio frequencies. Its purpose is the same as that of a normal electronic filter: to pass a range of signal frequencies, but to block others. The filter acts on mechanical vibrations which are the analogue of the electrical signal. At the input and output of the filter, transducers convert the electrical signal into, and then back from, these mechanical vibrations.

<span class="mw-page-title-main">Current sensing</span>

In electrical engineering, current sensing is any one of several techniques used to measure electric current. The measurement of current ranges from picoamps to tens of thousands of amperes. The selection of a current sensing method depends on requirements such as magnitude, accuracy, bandwidth, robustness, cost, isolation or size. The current value may be directly displayed by an instrument, or converted to digital form for use by a monitoring or control system.

References

  1. "Manganin 230 Shunt Wire". California Fine Wire Co. Retrieved 13 January 2018.
  2. "Goodfellow Technical Information Manganin® - Resistance Alloy". www.goodfellow.com. Retrieved 2016-09-11.
  3. "Stability of Double-Walled Manganin Resistors" (PDF). Archived (PDF) from the original on 2024-09-30. Retrieved 2007-04-30.
  4. "Special Use Sensors - Manganin Pressure Sensor" (PDF). web.sensor-ic.com. Vishay. Retrieved 15 April 2023.[ permanent dead link ]
  5. National Electrical Manufacturers Association (1946). A chronological history of electrical development from 600 B.C. New York, N.Y., National Electrical Manufacturers Association.
  6. U.S. patent 381304A
  7. Fessenden, Reginald A. (1893-07-21). "Electrical Notes". Science. ns-22 (546): 35–36. doi:10.1126/science.ns-22.546.35. ISSN   0036-8075.
  8. Woodbury, David O. (1949). A Measure for Greatness; A Short Biography of Edward Weston. New York, Toronto, London: McGraw-Hill.
  9. CRC Handbook 27th ed. Feb 1943. p. 1875.
  10. CRC Handbook 27th ed. Feb 1943. p. 2485.