On maritime vessels, noise and vibration are not the same but they have the same origin and come in many forms. The methods to handle the related problems are similar, to a certain level, where most shipboard noise problems are reduced by controlling vibration.
The main producers of mechanically created noise and vibration are the engines, but there are also other sources, like the air conditioning, shaft-line, cargo handling and control equipment and mooring machinery.
When looking at diesel driven vessels, the engines induce large accelerations that travel from the foundation of the engine throughout the ship. In most compartments, this type of vibration normally manifests itself as audible noise. The problem with diesels is that, for a given size, there is a fixed amount of power generated per cylinder. To increase power it is necessary to add cylinders but, when cylinders are added, the crankshaft has to be lengthened and after a very limited number of additions, the lengthened crankshaft begins to flex and vibrate all on its own. This results in an increase of vibrations spread all over the ships structure. Crankshaft vibration can be reduced by a harmonic balancer.
Large vessels sometimes use electrical propulsion motors, the electrical power being provided by a diesel generator. Noise and vibration of electric motors include, besides mechanical and aerodynamic sources, an electromagnetic source due to electromagnetic forces which is responsible for the "whining noise" of the motor.
Steam turbines and gas turbines, on the other hand, when new and/or in good repair, do not, by themselves generate excessive vibration as long as the turbine blades are in a perfect condition and rotate in a smooth gas flow. But after some time microscopic defects appear and cause small pits to appear in the surface of the intake and the blades which set up eddies in the gas flow, resulting in loss of performance and vibrations. Vibration levels may change with different loading conditions or when doing a manoeuvre.
Besides mechanical produced vibrations, other sources are caused by the motion of the sea, slamming of the vessel on the waves and water depth to mention just a few. The main problem here is that they are less controllable.
The engine-gearbox interaction is usually a source for noise and vibrations. Here, it can be installed highly flexible couplings between the engine and the gearbox. These type of couplings are used because of their low torsional stiffness. [1]
Exposure to noise and vibrations is regulated and limits for maritime vessels are given in the ISO standard 6954: Guidelines for permissible mechanical vibrations on board seagoing vessels to protect personnel and crew.
Because there are different noise regulations from country to country, the International Maritime Organization (gago) sets some standards for vessels. The table below gives some comparisons of preferred maximum noise levels on board of vessels and onshore levels.
Area | Noise limit land (dB) | IMO noise limit (dB) |
---|---|---|
workshop | 70 | 85 |
kitchen | 60 | 75 |
control rooms | 55 | 75 |
offices | 55 | 65 |
dining rooms | 55 | 65 |
sleeping area | 45 | 60 |
Noise generated on board ships and submarines can have far-reaching effects on the ability of the vessel to operate safely and efficiently. Military vessels in particular need to be quiet to avoid detection by sonar, so many methods have been used to limit a vessel's noise signature. Controlling noise is therefore a defense measure, most acutely for submarines.
At the design table, the naval architect makes the necessary choices concerning the ship's structure to achieve an optimized design towards noise and vibration control. Decisions are made about the engine and shaft, what kind of instruments and material can be used to reduce noise and vibrations throughout the vessel and what is the best way to implement these. Advanced computer technology tries to simulate these vibrations under different ship conditions to provide an overview of weak spots. The generated vibrations are also compared with the natural frequencies of the different parts/sections and adaptions can be done to the structure. On board, noise travels through the structure (mainly low frequencies), more than through the air, so insulating the engine room is not enough as a way to avoid the noise travelling through the boat. [2]
To control the mechanical vibrations at the origin, isolating fittings, elastic mounting of engines, elastic holding of pipes or dampers can be installed. These will absorb a part of the vibrations (and the noise) produced by the machines. To control the electromagnetic vibrations at the origin, skewing the electric motor or choosing a better slot/pole combination [3] will reduce electromagnetic force harmonics or avoid resonances between magnetic forces and structural modes of the electric motor.
In megayachts, the engines and alternators let out unwanted noise and vibrations. To solve this, the solution is a double elastic suspension where the engine and alternator are mounted with vibration dampers on a common frame. Then, this is mounted elastically between the common frame and the hull. While in megayatchs the requirement is the comfort of crew and passengers, in other applications, such as navy ships, the requirements involve that the engines or generators should work under certain shock loads. To achieve this the ships install double elastic suspensions and high deflection mounts are installed between the unit and base frame. Beforehand, the engineers calculate the torsional vibrations or the 6/12 degree of freedom to guarantee the optimum combination of couplings and mounts. [4]
Regular maintenance will have a major influence on the performance of instruments and machines. Lubrication of the joints, tightening of the bolts, good alignment of stern contour of the vessel, adjusting of variables following the weekly and monthly schedule are the most effective routes to noise and vibration control.
An engine or motor is a machine designed to convert one or more forms of energy into mechanical energy.
A gas turbine, by its old name internal combustion turbine, is a type of continuous flow internal combustion engine. The main parts common to all gas turbine engines form the power-producing part and are, in the direction of flow:
In electricity generation, a generator is a device that converts motion-based power or fuel-based power into electric power for use in an external circuit. Sources of mechanical energy include steam turbines, gas turbines, water turbines, internal combustion engines, wind turbines and even hand cranks. The first electromagnetic generator, the Faraday disk, was invented in 1831 by British scientist Michael Faraday. Generators provide nearly all the power for electrical grids.
A starter is a device used to rotate (crank) an internal-combustion engine so as to initiate the engine's operation under its own power. Starters can be electric, pneumatic, or hydraulic. The starter can also be another internal-combustion engine in the case, for instance, of very large engines, or diesel engines in agricultural or excavation applications.
An alternator is an electrical generator that converts mechanical energy to electrical energy in the form of alternating current. For reasons of cost and simplicity, most alternators use a rotating magnetic field with a stationary armature. Occasionally, a linear alternator or a rotating armature with a stationary magnetic field is used. In principle, any AC electrical generator can be called an alternator, but usually the term refers to small rotating machines driven by automotive and other internal combustion engines.
The Napier Deltic engine is a British opposed-piston valveless, supercharged uniflow scavenged, two-stroke diesel engine used in marine and locomotive applications, designed and produced by D. Napier & Son. Unusually, the cylinders were disposed in a three-bank triangle, with a crankshaft at each corner of the triangle.
Torsional vibration is the angular vibration of an object - commonly a shaft - along its axis of rotation. Torsional vibration is often a concern in power transmission systems using rotating shafts or couplings, where it can cause failures if not controlled. A second effect of torsional vibrations applies to passenger cars. Torsional vibrations can lead to seat vibrations or noise at certain speeds. Both reduce the comfort.
Vibration isolation is the prevention of transmission of vibration from one component of a system to others parts of the same system, as in buildings or mechanical systems. Vibration is undesirable in many domains, primarily engineered systems and habitable spaces, and methods have been developed to prevent the transfer of vibration to such systems. Vibrations propagate via mechanical waves and certain mechanical linkages conduct vibrations more efficiently than others. Passive vibration isolation makes use of materials and mechanical linkages that absorb and damp these mechanical waves. Active vibration isolation involves sensors and actuators that produce disruptive interference that cancels-out incoming vibration.
Marine propulsion is the mechanism or system used to generate thrust to move a watercraft through water. While paddles and sails are still used on some smaller boats, most modern ships are propelled by mechanical systems consisting of an electric motor or internal combustion engine driving a propeller, or less frequently, in pump-jets, an impeller. Marine engineering is the discipline concerned with the engineering design process of marine propulsion systems.
Noise, vibration, and harshness (NVH), also known as noise and vibration (N&V), is the study and modification of the noise and vibration characteristics of vehicles, particularly cars and trucks. While noise and vibration can be readily measured, harshness is a subjective quality, and is measured either via jury evaluations, or with analytical tools that can provide results reflecting human subjective impressions. The latter tools belong to the field psychoacoustics.
The rotor is a moving component of an electromagnetic system in the electric motor, electric generator, or alternator. Its rotation is due to the interaction between the windings and magnetic fields which produces a torque around the rotor's axis.
An engine–generator is the combination of an electrical generator and an engine mounted together to form a single piece of equipment. This combination is also called an engine–generator set or a gen-set. In many contexts, the engine is taken for granted and the combined unit is simply called a generator. An engine–generator may be a fixed installation, part of a vehicle, or made small enough to be portable.
A dynamo is an electrical generator that creates direct current using a commutator. Dynamos were the first electrical generators capable of delivering power for industry, and the foundation upon which many other later electric-power conversion devices were based, including the electric motor, the alternating-current alternator, and the rotary converter.
A free-piston engine is a linear, 'crankless' internal combustion engine, in which the piston motion is not controlled by a crankshaft but determined by the interaction of forces from the combustion chamber gases, a rebound device and a load device.
A harmonic damper is a device fitted to the free end of the crankshaft of an internal combustion engine to counter torsional and resonance vibrations from the crankshaft. This device must be an interference fit to the crankshaft in order to operate in an effective manner. An interference fit ensures the device moves in perfect step with the crankshaft. It is essential on engines with long crankshafts and V8 engines with cross plane cranks, or V6 and straight-three engines with uneven firing order. Harmonics and torsional vibrations can greatly reduce crankshaft life, or cause instantaneous failure if the crankshaft runs at or through an amplified resonance. Dampers are designed with a specific weight (mass) and diameter, which are dependent on the damping material/method used, to reduce mechanical Q factor, or damp, crankshaft resonances.
Integrated electric propulsion (IEP) or full electric propulsion (FEP) or integrated full electric propulsion (IFEP) is an arrangement of marine propulsion systems such that gas turbines or diesel generators or both generate three-phase electricity which is then used to power electric motors turning either propellers or waterjet impellors. It is a modification of the combined diesel-electric and gas propulsion system for ships which eliminates the need for clutches and reduces or eliminates the need for gearboxes by using electrical transmission rather than mechanical transmission of energy, so it is a series hybrid electric propulsion, instead of parallel.
The Geislinger coupling is an all-metal coupling for rotating shafts. It is elastic in torsion, allowing it to absorb torsional vibration.
An internal combustion engine is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons, turbine blades, a rotor, or a nozzle. This force moves the component over a distance, transforming chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to.
Idaho National Laboratory ran the Aurora Generator Test in 2007 to demonstrate how a cyberattack could destroy physical components of the electric grid. The experiment used a computer program to rapidly open and close a diesel generator's circuit breakers out of phase from the rest of the grid, thereby subjecting the engine to abnormal torques and ultimately causing it to explode. This vulnerability is referred to as the Aurora Vulnerability.
The Futami class was a class of oceanographic research ship of Japan Maritime Self-Defense Force (JMSDF) in the late 1970s.