Effective input noise temperature

Last updated

In telecommunications, effective input noise temperature is the source noise temperature in a two-port network or amplifier that will result in the same output noise power, when connected to a noise-free network or amplifier, as that of the actual network or amplifier connected to a noise-free source. If F is the noise figure numeric and 290 K the standard noise temperature, then the effective noise temperature is given by Tn = 290(F' − 1).

Telecommunication transmission of information between locations using electromagnetics

Telecommunication is the transmission of signs, signals, messages, words, writings, images and sounds or information of any nature by wire, radio, optical or other electromagnetic systems. Telecommunication occurs when the exchange of information between communication participants includes the use of technology. It is transmitted either electrically over physical media, such as cables, or via electromagnetic radiation. Such transmission paths are often divided into communication channels which afford the advantages of multiplexing. Since the Latin term communicatio is considered the social process of information exchange, the term telecommunications is often used in its plural form because it involves many different technologies.

In electronics, noise temperature is one way of expressing the level of available noise power introduced by a component or source. The power spectral density of the noise is expressed in terms of the temperature that would produce that level of Johnson–Nyquist noise, thus:

Two-port network (kind of four-terminal network or quadripole) electrical network (circuit) or device with two pairs of terminals to connect to external circuits

A two-port network is an electrical network (circuit) or device with two pairs of terminals to connect to external circuits. Two terminals constitute a port if the currents applied to them satisfy the essential requirement known as the port condition: the electric current entering one terminal must equal the current emerging from the other terminal on the same port. The ports constitute interfaces where the network connects to other networks, the points where signals are applied or outputs are taken. In a two-port network, often port 1 is considered the input port and port 2 is considered the output port.

Related Research Articles

Operational amplifier thid is functional :D DC-coupled high-gain electronic voltage amplifier with a differential input and usually a single-ended outp

An operational amplifier is a DC-coupled high-gain electronic voltage amplifier with a differential input and, usually, a single-ended output. In this configuration, an op-amp produces an output potential that is typically hundreds of thousands of times larger than the potential difference between its input terminals. Operational amplifiers had their origins in analog computers, where they were used to perform mathematical operations in many linear, non-linear, and frequency-dependent circuits.

In telecommunication, antenna noise temperature is the temperature of a hypothetical resistor at the input of an ideal noise-free receiver that would generate the same output noise power per unit bandwidth as that at the antenna output at a specified frequency. In other words, antenna noise temperature is a parameter that describes how much noise an antenna produces in a given environment. This temperature is not the physical temperature of the antenna. Moreover, an antenna does not have an intrinsic "antenna temperature" associated with it; rather the temperature depends on its gain pattern and the thermal environment that it is placed in.

In telecommunication, an equivalent noise resistance is a quantitative representation in resistance units of the spectral density of a noise-voltage generator, given by where is the spectral density, is the Boltzmann's constant, is the standard noise temperature, so .

Noise figure (NF) and noise factor (F) are measures of degradation of the signal-to-noise ratio (SNR), caused by components in a signal chain. It is a number by which the performance of an amplifier or a radio receiver can be specified, with lower values indicating better performance.

Digital-to-analog converter device that converts a digital signal into an analog signal

In electronics, a digital-to-analog converter is a system that converts a digital signal into an analog signal. An analog-to-digital converter (ADC) performs the reverse function.

Negative-feedback amplifier

A Negative-feedback amplifier is an electronic amplifier that subtracts a fraction of its output from its input, so that negative feedback opposes the original signal. The applied negative feedback can improve its performance and reduces sensitivity to parameter variations due to manufacturing or environment. Because of these advantages, many amplifiers and control systems use negative feedback.

Johnson–Nyquist noise

Johnson–Nyquist noise is the electronic noise generated by the thermal agitation of the charge carriers inside an electrical conductor at equilibrium, which happens regardless of any applied voltage. Thermal noise is present in all electrical circuits, and in sensitive electronic equipment such as radio receivers can drown out weak signals, and can be the limiting factor on sensitivity of an electrical measuring instrument. Thermal noise increases with temperature. Some sensitive electronic equipment such as radio telescope receivers are cooled to cryogenic temperatures to reduce thermal noise in their circuits. The generic, statistical physical derivation of this noise is called the fluctuation-dissipation theorem, where generalized impedance or generalized susceptibility is used to characterize the medium.

A low-noise amplifier (LNA) is an electronic amplifier that amplifies a very low-power signal without significantly degrading its signal-to-noise ratio. An amplifier increases the power of both the signal and the noise present at its input. LNAs are designed to minimize additional noise. Designers can minimize additional noise by using low-noise components, operating points, and circuit topologies. Minimizing additional noise must balance with other goals such as power gain and impedance matching.

Instrumentation amplifier

An instrumentationamplifier is a type of differential amplifier that has been outfitted with input buffer amplifiers, which eliminate the need for input impedance matching and thus make the amplifier particularly suitable for use in measurement and test equipment. Additional characteristics include very low DC offset, low drift, low noise, very high open-loop gain, very high common-mode rejection ratio, and very high input impedances. Instrumentation amplifiers are used where great accuracy and stability of the circuit both short and long-term are required.

Common emitter

In electronics, a common-emitter amplifier is one of three basic single-stage bipolar-junction-transistor (BJT) amplifier topologies, typically used as the voltage amplifier.

Input impedance

The input impedance of an electrical network is the measure of the opposition to current (impedance), both static (resistance) and dynamic (reactance), into the load network that is external to the electrical source. The input admittance (1/impedance) is a measure of the load's propensity to draw current. The source network is the portion of the network that transmits power, and the load network is the portion of the network that consumes power.

Noise (electronics) random fluctuation in an electrical signal

In electronics, noise is an unwanted disturbance in an electrical signal. Noise generated by electronic devices varies greatly as it is produced by several different effects.

A mercury swivel commutator is an electrical commutator typically used in electrophysiological experiments on head free or moving animals. Electrical recordings from stationary, head-fixed animals can be done with electrodes attached to a stereotaxic rig. The wires leading from the electrode can be connected to the amplifier and recording setup using regular wires, since no twisting occurs. Freely moving animals may turn through several revolutions in one direction. While recording from freely moving animals, therefore, an electrical commutator is needed to prevent twisting of the wires that go from the electrode to the amplifier/recorder.

Valve RF amplifier

A valve RF amplifier or tube amplifier (U.S.), is a device for electrically amplifying the power of an electrical radio frequency signal.

Tower Mounted Amplifier

A Tower Mounted Amplifier (TMA), or Mast Head Amplifier (MHA), is a low-noise amplifier (LNA) mounted as close as practical to the antenna in mobile masts or base transceiver stations. A TMA reduces the base transceiver station noise figure (NF) and therefore improves its overall sensitivity; in other words the mobile mast is able to receive weaker signals.

A minimum detectable signal is a signal at the input of a system whose power produces a signal-to-noise ratio of m at the output. In practice, m is usually chosen to be greater than unity. In some literature, the name sensitivity is used for this concept.

Transimpedance amplifier amplifier that converts current to voltage

In electronics, a transimpedance amplifier, (TIA) is a current to voltage converter, almost exclusively implemented with one or more operational amplifiers. It is also possible to construct a transimpedance amplifier with discrete components using a Field effect transistor for the gain element. This has been done where a very low noise figure was required. The TIA can be used to amplify the current output of Geiger–Müller tubes, photo multiplier tubes, accelerometers, photo detectors and other types of sensors to a usable voltage. Current to voltage converters are used with sensors that have a current response that is more linear than the voltage response. This is the case with photodiodes where it is not uncommon for the current response to have better than 1% nonlinearity over a wide range of light input. The transimpedance amplifier presents a low impedance to the photodiode and isolates it from the output voltage of the operational amplifier. In its simplest form a transimpedance amplifier has just a large valued feedback resistor, Rf. The gain of the amplifer is set by this resistor and because the amplifier is in an inverting configuration, has a value of -Rf. There are several different configurations of transimpedance amplifiers, each suited to a particular application. The one factor they all have in common is the requirement to convert the low-level current of a sensor to a voltage. The gain, bandwidth, as well as current and voltage offsets change with different types of sensors, requiring different configurations of transimpedance amplifiers.

Y-factor

The Y-factor method is a widely used technique for measuring the gain and noise temperature of an amplifier. It is based on the Johnson–Nyquist noise of a resistor at two different, known temperatures.

References

PD-icon.svg This article incorporates  public domain material from the General Services Administration document "Federal Standard 1037C" (in support of MIL-STD-188 ).

General Services Administration United States government agency

The General Services Administration (GSA), an independent agency of the United States government, was established in 1949 to help manage and support the basic functioning of federal agencies. GSA supplies products and communications for U.S. government offices, provides transportation and office space to federal employees, and develops government-wide cost-minimizing policies and other management tasks.

MIL-STD-188 series of U.S. military standards relating to telecommunications

MIL-STD-188 is a series of U.S. military standards relating to telecommunications.