Noise figure

Last updated

Noise figure (NF) and noise factor (F) are figures of merit that indicate degradation of the signal-to-noise ratio (SNR) that is caused by components in a signal chain. These figures of merit are used to evaluate the performance of an amplifier or a radio receiver, with lower values indicating better performance.

Contents

The noise factor is defined as the ratio of the output noise power of a device to the portion thereof attributable to thermal noise in the input termination at standard noise temperature T0 (usually 290  K). The noise factor is thus the ratio of actual output noise to that which would remain if the device itself did not introduce noise, which is equivalent to the ratio of input SNR to output SNR.

The noise factor and noise figure are related, with the former being a unitless ratio and the latter being the logarithm of the noise factor, expressed in units of decibels (dB). [1]

General

The noise figure is the difference in decibel (dB) between the noise output of the actual receiver to the noise output of an "ideal" receiver with the same overall gain and bandwidth when the receivers are connected to matched sources at the standard noise temperature T0 (usually 290 K). The noise power from a simple load is equal to kTB, where k is the Boltzmann constant, T is the absolute temperature of the load (for example a resistor), and B is the measurement bandwidth.

This makes the noise figure a useful figure of merit for terrestrial systems, where the antenna effective temperature is usually near the standard 290 K. In this case, one receiver with a noise figure, say 2 dB better than another, will have an output signal-to-noise ratio that is about 2 dB better than the other. However, in the case of satellite communications systems, where the receiver antenna is pointed out into cold space, the antenna effective temperature is often colder than 290 K. [2] In these cases a 2 dB improvement in receiver noise figure will result in more than a 2 dB improvement in the output signal-to-noise ratio. For this reason, the related figure of effective noise temperature is therefore often used instead of the noise figure for characterizing satellite-communication receivers and low-noise amplifiers.

In heterodyne systems, output noise power includes spurious contributions from image-frequency transformation, but the portion attributable to thermal noise in the input termination at standard noise temperature includes only that which appears in the output via the principal frequency transformation of the system and excludes that which appears via the image frequency transformation.

Definition

The noise factorF of a system is defined as [3]

where SNRi and SNRo are the input and output signal-to-noise ratios respectively. The SNR quantities are unitless power ratios. Note that this specific definition is only valid for an input signal of which the noise is Ni=kT0B.

The noise figure NF is defined as the noise factor in units of decibels (dB):

where SNRi, dB and SNRo, dB are in units of (dB). These formulae are only valid when the input termination is at standard noise temperature T0 = 290 K, although in practice small differences in temperature do not significantly affect the values.

The noise factor of a device is related to its noise temperature Te: [4]

Attenuators have a noise factor F equal to their attenuation ratio L when their physical temperature equals T0. More generally, for an attenuator at a physical temperature T, the noise temperature is Te = (L 1)T, giving a noise factor

Noise factor of cascaded devices

If several devices are cascaded, the total noise factor can be found with Friis' formula: [5]

where Fn is the noise factor for the n-th device, and Gn is the power gain (linear, not in dB) of the n-th device. The first amplifier in a chain usually has the most significant effect on the total noise figure because the noise figures of the following stages are reduced by stage gains. Consequently, the first amplifier usually has a low noise figure, and the noise figure requirements of subsequent stages is usually more relaxed.

Noise factor as a function of additional noise

The source outputs a signal of power
S
i
{\displaystyle S_{i}}
and noise of power
N
i
{\displaystyle N_{i}}
. Both signal and noise get amplified. However, in addition to the amplified noise from the source, the amplifier adds additional noise to its output denoted
N
a
{\displaystyle N_{a}}
. Therefore, the SNR at the amplifier's output is lower than at its input. NoiseFactorDefinition.svg
The source outputs a signal of power and noise of power . Both signal and noise get amplified. However, in addition to the amplified noise from the source, the amplifier adds additional noise to its output denoted . Therefore, the SNR at the amplifier's output is lower than at its input.

The noise factor may be expressed as a function of the additional output referred noise power and the power gain of an amplifier.

Derivation

From the definition of noise factor [3]

and assuming a system which has a noisy single stage amplifier. The signal to noise ratio of this amplifier would include its own output referred noise , the amplified signal and the amplified input noise ,

Substituting the output SNR to the noise factor definition, [6]

In cascaded systems does not refer to the output noise of the previous component. An input termination at the standard noise temperature is still assumed for the individual component. This means that the additional noise power added by each component is independent of the other components.

Optical noise figure

The above describes noise in electrical systems. The optical noise figure is discussed in multiple sources. [7] [8] [9] [10] [11] Electric sources generate noise with a power spectral density, or energy per mode, equal to kT, where k is the Boltzmann constant and T is the absolute temperature. One mode has two quadratures, i.e. the amplitudes of cos and sin oscillations of voltages, currents or fields. However, there is also noise in optical systems. In these, the sources have no fundamental noise. Instead the energy quantization causes notable shot noise in the detector. In an optical receiver which can output one available mode or two available quadratures this corresponds to a noise power spectral density, or energy per mode, of hf where h is the Planck constant and f is the optical frequency. In an optical receiver with only one available quadrature the shot noise has a power spectral density, or energy per mode, of only hf/2.

In the 1990s, an optical noise figure has been defined. [7] This has been called Fpnf for photon number fluctuations. [8] The powers needed for SNR and noise factor calculation are the electrical powers caused by the current in a photodiode. SNR is the square of mean photocurrent divided by variance of photocurrent. Monochromatic or sufficiently attenuated light has a Poisson distribution of detected photons. If, during a detection interval the expectation value of detected photons is n then the variance is also n and one obtains SNRpnf,in = n2/n = n. Behind an optical amplifier with power gain G there will be a mean of Gn detectable signal photons. In the limit of large n the variance of photons is Gn(2nsp(G-1)+1) where nsp is the spontaneous emission factor. One obtains SNRpnf,out = G2n2/(Gn(2nsp(G-1)+1)) = n/(2nsp(1-1/G)+1/G). Resulting optical noise factor is Fpnf = SNRpnf,in / SNRpnf,out = 2nsp(1-1/G)+1/G.

Fpnf is in conceptual conflict [9] [10] with the electrical noise factor, which is now called Fe:

Photocurrent I is proportional to optical power P. P is proportional to squares of a field amplitude (electric or magnetic). So, the receiver is nonlinear in amplitude. The "Power" needed for SNRpnf calculation is proportional to the 4th power of the signal amplitude. But for Fe in the electrical domain the power is proportional to the square of the signal amplitude.

If SNRpnf is a noise factor then its definition must be independent of measurement apparatus and frequency. Consider the signal "Power" in the sense of SNRpnf definition. Behind an amplifier it is proportional to G2n2. We may replace the photodiode by a thermal power meter, and measured photocurrent I by measured temperature change . "Power", being proportional to I2 or P2, is also proportional to 2. Thermal power meters can be built at all frequencies. Hence it is possible to lower the frequency from optical (say 200 THz) to electrical (say 200 MHz). Still there, "Power" must be proportional to 2 or P2. Electrical power P is proportional to the square U2 of voltage U. But "Power" is proportional to U4.

These implications are in obvious conflict with ~150 years of physics. They are compelling consequence of calling Fpnf a noise factor, or noise figure when expressed in dB.

At any given electrical frequency, noise occurs in both quadratures, i.e. in phase (I) and in quadrature (Q) with the signal. Both these quadratures are available behind the electrical amplifier. The same holds in an optical amplifier. But the direct detection photoreceiver needed for measurement of SNRpnf takes mainly the in-phase noise into account whereas quadrature noise can be neglected for high n. Also, the receiver outputs only one baseband signal, corresponding to quadrature. So, one quadrature or degree-of-freedom is lost.

For an optical amplifier with large G it holds Fpnf ≥ 2 whereas for an electrical amplifier it holds Fe ≥ 1.

Moreover, today's long-haul optical fiber communication is dominated by coherent optical I&Q receivers but Fpnf does not describe the SNR degradation observed in these.

Another optical noise figure Fase for amplified spontaneous emission has been defined. [8] But the noise factor Fase is not the SNR degradation factor in any optical receiver.

All the above conflicts are resolved by the optical in-phase and quadrature noise factor and figure Fo,IQ. [9] [10] It can be measured using a coherent optical I&Q receiver. In these, power of the output signal is proportional to the square of an optical field amplitude because they are linear in amplitude. They pass both quadratures. For an optical amplifier it holds Fo,IQ = nsp(1-1/G)+1/G ≥ 1. Quantity nsp(1-1/G) is the input-referred number of added noise photons per mode.

Fo,IQ and Fpnf can easily be converted into each other. For large G it holds Fo,IQ = Fpnf/2 or, when expressed in dB, Fo,IQ is 3 dB less than Fpnf. The ideal Fo,IQ in dB equals 0 dB. This describes the known fact that the sensitivity of an ideal optical I&Q receiver is not improved by an ideal optical preamplifier.

See also

Related Research Articles

Noise-equivalent power (NEP) is a measure of the sensitivity of a photodetector or detector system. It is defined as the signal power that gives a signal-to-noise ratio of one in a one hertz output bandwidth. An output bandwidth of one hertz is equivalent to half a second of integration time. The units of NEP are watts per square root hertz. The NEP is equal to the noise amplitude spectral density divided by the responsivity. The fundamental equation is .

In electronics, noise temperature is one way of expressing the level of available noise power introduced by a component or source. The power spectral density of the noise is expressed in terms of the temperature that would produce that level of Johnson–Nyquist noise, thus:

<span class="mw-page-title-main">Shot noise</span> Type of electronic noise

Shot noise or Poisson noise is a type of noise which can be modeled by a Poisson process.

<span class="mw-page-title-main">Signal-to-noise ratio</span> Ratio of the desired signal to the background noise

Signal-to-noise ratio is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to noise power, often expressed in decibels. A ratio higher than 1:1 indicates more signal than noise.

In telecommunications, a third-order intercept point (IP3 or TOI) is a specific figure of merit associated with the more general third-order intermodulation distortion (IMD3), which is a measure for weakly nonlinear systems and devices, for example receivers, linear amplifiers and mixers. It is based on the idea that the device nonlinearity can be modeled using a low-order polynomial, derived by means of Taylor series expansion. The third-order intercept point relates nonlinear products caused by the third-order nonlinear term to the linearly amplified signal, in contrast to the second-order intercept point that uses second-order terms.

In information theory, the Shannon–Hartley theorem tells the maximum rate at which information can be transmitted over a communications channel of a specified bandwidth in the presence of noise. It is an application of the noisy-channel coding theorem to the archetypal case of a continuous-time analog communications channel subject to Gaussian noise. The theorem establishes Shannon's channel capacity for such a communication link, a bound on the maximum amount of error-free information per time unit that can be transmitted with a specified bandwidth in the presence of the noise interference, assuming that the signal power is bounded, and that the Gaussian noise process is characterized by a known power or power spectral density. The law is named after Claude Shannon and Ralph Hartley.

<span class="mw-page-title-main">Negative-feedback amplifier</span> Type of electronic amplifier

A negative-feedback amplifier is an electronic amplifier that subtracts a fraction of its output from its input, so that negative feedback opposes the original signal. The applied negative feedback can improve its performance and reduces sensitivity to parameter variations due to manufacturing or environment. Because of these advantages, many amplifiers and control systems use negative feedback.

The sensitivity of an electronic device, such as a communications system receiver, or detection device, such as a PIN diode, is the minimum magnitude of input signal required to produce a specified output signal having a specified signal-to-noise ratio, or other specified criteria. In general, it is the signal level required for a particular quality of received information.

<span class="mw-page-title-main">Frequency mixer</span> Circuit that creates new frequencies from two signals

In electronics, a mixer, or frequency mixer, is an electrical circuit that creates new frequencies from two signals applied to it. In its most common application, two signals are applied to a mixer, and it produces new signals at the sum and difference of the original frequencies. Other frequency components may also be produced in a practical frequency mixer.

<span class="mw-page-title-main">Asymptotic gain model</span>

The asymptotic gain model is a representation of the gain of negative feedback amplifiers given by the asymptotic gain relation:

In signal processing, the output of the matched filter is given by correlating a known delayed signal, or template, with an unknown signal to detect the presence of the template in the unknown signal. This is equivalent to convolving the unknown signal with a conjugated time-reversed version of the template. The matched filter is the optimal linear filter for maximizing the signal-to-noise ratio (SNR) in the presence of additive stochastic noise.

Friis formula or Friis's formula, named after Danish-American electrical engineer Harald T. Friis, is either of two formulas used in telecommunications engineering to calculate the signal-to-noise ratio of a multistage amplifier. One relates to noise factor while the other relates to noise temperature.

This article illustrates some typical operational amplifier applications. A non-ideal operational amplifier's equivalent circuit has a finite input impedance, a non-zero output impedance, and a finite gain. A real op-amp has a number of non-ideal features as shown in the diagram, but here a simplified schematic notation is used, many details such as device selection and power supply connections are not shown. Operational amplifiers are optimised for use with negative feedback, and this article discusses only negative-feedback applications. When positive feedback is required, a comparator is usually more appropriate. See Comparator applications for further information.

In telecommunications, the carrier-to-noise ratio, often written CNR or C/N, is the signal-to-noise ratio (SNR) of a modulated signal. The term is used to distinguish the CNR of the radio frequency passband signal from the SNR of an analog base band message signal after demodulation. For example, with FM radio, the strength of the 100 MHz carrier with modulations would be considered for CNR, whereas the audio frequency analogue message signal would be for SNR; in each case, compared to the apparent noise. If this distinction is not necessary, the term SNR is often used instead of CNR, with the same definition.

<span class="mw-page-title-main">Image sensor format</span> Shape and size of a digital cameras image sensor

In digital photography, the image sensor format is the shape and size of the image sensor.

<span class="mw-page-title-main">Tower Mounted Amplifier</span>

A Tower Mounted Amplifier (TMA), or Mast Head Amplifier (MHA), is a low-noise amplifier (LNA) mounted as close as practical to the antenna in mobile masts or base transceiver stations. A TMA reduces the base transceiver station noise figure (NF) and therefore improves its overall sensitivity; in other words the mobile mast is able to receive weaker signals. The power to feed the amplifier is usually a DC component on the same coaxial cable that feeds the antenna, otherwise an extra power cable has to be run to the TMA/MHA to supply it with power.

Signal-to-noise ratio (SNR) is used in imaging to characterize image quality. The sensitivity of a imaging system is typically described in the terms of the signal level that yields a threshold level of SNR.

A minimum detectable signal is a signal at the input of a system whose power allows it to be detected over the background electronic noise of the detector system. It can alternately be defined as a signal that produces a signal-to-noise ratio of a given value m at the output. In practice, m is usually chosen to be greater than unity. In some literature, the name sensitivity is used for this concept.

In information theory and telecommunication engineering, the signal-to-interference-plus-noise ratio (SINR) is a quantity used to give theoretical upper bounds on channel capacity in wireless communication systems such as networks. Analogous to the signal-to-noise ratio (SNR) used often in wired communications systems, the SINR is defined as the power of a certain signal of interest divided by the sum of the interference power and the power of some background noise. If the power of noise term is zero, then the SINR reduces to the signal-to-interference ratio (SIR). Conversely, zero interference reduces the SINR to the SNR, which is used less often when developing mathematical models of wireless networks such as cellular networks.

An RF chain is a cascade of electronic components and sub-units which may include amplifiers, filters, mixers, attenuators and detectors. It can take many forms, for example, as a wide-band receiver-detector for electronic warfare (EW) applications, as a tunable narrow-band receiver for communications purposes, as a repeater in signal distribution systems, or as an amplifier and up-converters for a transmitter-driver. In this article, the term RF covers the frequency range "medium Frequencies" up to "microwave Frequencies", i.e. from 100 kHz to 20 GHz.

References

  1. "Noise temperature, Noise Figure and noise factor".
  2. Keysight (2019), p. 9.
  3. 1 2 Keysight (2019) , p. 6, Eqn. (1-1).
  4. Keysight (2019) , p. 8, Eqn. (1-5), with some rearrangement from Te = T0(F − 1).
  5. Keysight (2019), p. 10, Eqn. (2-3).
  6. Aspen Core. Derivation of noise figure equations (DOCX), pp. 3–4
  7. 1 2 E. Desurvire, Erbium doped fiber amplifiers: Principles and Applications, Wiley, New York, 1994
  8. 1 2 3 H. A. Haus, "The noise figure of optical amplifiers," in IEEE Photonics Technology Letters, vol. 10, no. 11, pp. 1602-1604, Nov. 1998, doi: 10.1109/68.726763
  9. 1 2 3 R. Noe, "Consistent Optical and Electrical Noise Figure," in Journal of Lightwave Technology, 2022, doi: 10.1109/JLT.2022.3212936, https://ieeexplore.ieee.org/document/9915356
  10. 1 2 3 R. Noe, "Noise Figure and Homodyne Noise Figure" Photonic Networks; 24th ITG-Symposium, Leipzig, Germany, 09-10 May 2023, pp. 85-91, https://ieeexplore.ieee.org/abstract/document/10173081, presentation https://www.vde.com/resource/blob/2264664/dc0e3c85c8e0cb386cbfa215fe499c4c/noise-figure-and-homodyne-noise-figure-data.pdf
  11. H. A. Haus, "Noise Figure Definition Valid From RF to Optical Frequencies", in IEEE Journal of Selected Topics in Quantum Electronics, Vol. 6, NO. 2, March/April 2000, pp. 240–247

PD-icon.svg This article incorporates public domain material from Federal Standard 1037C. General Services Administration. Archived from the original on 2022-01-22. (in support of MIL-STD-188).