This article includes a list of general references, but it remains largely unverified because it lacks sufficient corresponding inline citations .(June 2013) |

In mathematics, **Pontryagin duality** is a duality between locally compact abelian groups that allows generalizing Fourier transform to all such groups, which include the circle group (the multiplicative group of complex numbers of modulus one), the finite abelian groups (with the discrete topology), and the additive group of the integers (also with the discrete topology), the real numbers, and every finite dimensional vector space over the reals or a p-adic field.

- Introduction
- Definition
- The Pontryagin duality theorem
- Pontryagin duality and the Fourier transform
- Haar measure
- Fourier transform and Fourier inversion formula for L1-functions
- The group algebra
- Plancherel and L2 Fourier inversion theorems
- Bohr compactification and almost-periodicity
- Categorical considerations
- Generalizations
- Dualities for commutative topological groups
- Pontryagin duality for topological vector spaces
- Dualities for non-commutative topological groups
- See also
- Notes
- References

The **Pontryagin dual** of a locally compact abelian group, is the group formed by the continuous group homomorphisms from the group to the circle group. The **Pontryagin duality theorem** establishes Pontryagin duality by stating that any locally compact abelian group is naturally isomorphic with its bidual (the dual of its dual). The Fourier inversion theorem is a special case of this theorem.

The subject is named after Lev Pontryagin who laid down the foundations for the theory of locally compact abelian groups and their duality during his early mathematical works in 1934. Pontryagin's treatment relied on the group being second-countable and either compact or discrete. This was improved to cover the general locally compact abelian groups by Egbert van Kampen in 1935 and André Weil in 1940.

Pontryagin duality places in a unified context a number of observations about functions on the real line or on finite abelian groups:

- Suitably regular complex-valued periodic functions on the real line have Fourier series and these functions can be recovered from their Fourier series;
- Suitably regular complex-valued functions on the real line have Fourier transforms that are also functions on the real line and, just as for periodic functions, these functions can be recovered from their Fourier transforms; and
- Complex-valued functions on a finite abelian group have discrete Fourier transforms, which are functions on the dual group, which is a (non-canonically) isomorphic group. Moreover, any function on a finite abelian group can be recovered from its discrete Fourier transform.

The theory, introduced by Lev Pontryagin and combined with the Haar measure introduced by John von Neumann, André Weil and others depends on the theory of the dual group of a locally compact abelian group.

It is analogous to the dual vector space of a vector space: a finite-dimensional vector space *V* and its dual vector space *V** are not naturally isomorphic, but the endomorphism algebra (matrix algebra) of one is isomorphic to the opposite of the endomorphism algebra of the other: via the transpose. Similarly, a group and its dual group are not in general isomorphic, but their endomorphism rings are opposite to each other: . More categorically, this is not just an isomorphism of endomorphism algebras, but a contravariant equivalence of categories – see categorical considerations.

A topological group is a locally compact group if the underlying topological space is locally compact and Hausdorff; a topological group is *abelian* if the underlying group is abelian. Examples of locally compact abelian groups include finite abelian groups, the integers (both for the discrete topology, which is also induced by the usual metric), the real numbers, the circle group *T* (both with their usual metric topology), and also the *p*-adic numbers (with their usual *p*-adic topology).

For a locally compact abelian group , the **Pontryagin dual** is the group * of continuous group homomorphisms from to the circle group . That is,*

The Pontryagin dual is usually endowed with the topology given by uniform convergence on compact sets (that is, the topology induced by the compact-open topology on the space of all continuous functions from to ).

For example,

**Theorem**:^{ [1] }^{ [2] }There is a canonical isomorphism between any locally compact abelian group and its double dual.

Canonical means that there is a naturally defined map ; more importantly, the map should be functorial in . The canonical isomorphism is defined on as follows:

In other words, each group element is identified to the evaluation character on the dual. This is strongly analogous to the canonical isomorphism between a finite-dimensional vector space and its double dual, , and it is worth mentioning that any vector space is an Abelian group. If is a finite abelian group, then but this isomorphism is not canonical. Making this statement precise (in general) requires thinking about dualizing not only on groups, but also on maps between the groups, in order to treat dualization as a functor and prove the identity functor and the dualization functor are not naturally equivalent. Also the duality theorem implies that for any group (not necessarily finite) the dualization functor is an exact functor.

One of the most remarkable facts about a locally compact group is that it carries an essentially unique natural measure, the Haar measure, which allows one to consistently measure the "size" of sufficiently regular subsets of . "Sufficiently regular subset" here means a Borel set; that is, an element of the σ-algebra generated by the compact sets. More precisely, a **right Haar measure** on a locally compact group is a countably additive measure μ defined on the Borel sets of which is *right invariant* in the sense that μ(*Ax*) = μ(*A*) for an element of and a Borel subset of and also satisfies some regularity conditions (spelled out in detail in the article on Haar measure). Except for positive scaling factors, a Haar measure on is unique.

The Haar measure on allows us to define the notion of integral for (complex-valued) Borel functions defined on the group. In particular, one may consider various *L ^{p}* spaces associated to the Haar measure μ. Specifically,

Note that, since any two Haar measures on are equal up to a scaling factor, this –space is independent of the choice of Haar measure and thus perhaps could be written as . However, the –norm on this space depends on the choice of Haar measure, so if one wants to talk about isometries it is important to keep track of the Haar measure being used.

The dual group of a locally compact abelian group is used as the underlying space for an abstract version of the Fourier transform. If , then the Fourier transform is the function on defined by

where the integral is relative to Haar measure on . This is also denoted . Note the Fourier transform depends on the choice of Haar measure. It is not too difficult to show that the Fourier transform of an function on is a bounded continuous function on which vanishes at infinity.

**Fourier Inversion Formula for -Functions.**For each Haar measure on there is a unique Haar measure on such that whenever and , we have- If is continuous then this identity holds for all .

The *inverse Fourier transform* of an integrable function on is given by

where the integral is relative to the Haar measure on the dual group . The measure on that appears in the Fourier inversion formula is called the dual measure to and may be denoted .

The various Fourier transforms can be classified in terms of their domain and transform domain (the group and dual group) as follows (note that is Circle group):

Transform | Original domain, | Transform domain, | Measure, |
---|---|---|---|

Fourier transform | |||

Fourier series | |||

Discrete-time Fourier transform (DTFT) | |||

Discrete Fourier transform (DFT) |

As an example, suppose , so we can think about as by the pairing If is the Lebesgue measure on Euclidean space, we obtain the ordinary Fourier transform on and the dual measure needed for the Fourier inversion formula is . If we want to get a Fourier inversion formula with the same measure on both sides (that is, since we can think about as its own dual space we can ask for to equal ) then we need to use

However, if we change the way we identify with its dual group, by using the pairing

then Lebesgue measure on is equal to its own dual measure. This convention minimizes the number of factors of that show up in various places when computing Fourier transforms or inverse Fourier transforms on Euclidean space. (In effect it limits the only to the exponent rather than as a pre-factor outside the integral sign.) Note that the choice of how to identify with its dual group affects the meaning of the term "self-dual function", which is a function on equal to its own Fourier transform: using the classical pairing the function is self-dual. But using the pairing, which keeps the pre-factor as unity, makes self-dual instead. This second definition for the Fourier transform has the advantage that it maps the multiplicative identity to the convolution identity, which is useful as is a convolution algebra. See the next section on the group algebra. In addition, this form is also necessarily isometric on spaces. See below at Plancherel and *L*^{2} Fourier inversion theorems

The space of integrable functions on a locally compact abelian group is an algebra, where multiplication is convolution: the convolution of two integrable functions and is defined as

**Theorem.**The Banach space is an associative and commutative algebra under convolution.

This algebra is referred to as the *Group Algebra* of . By the Fubini–Tonelli theorem, the convolution is submultiplicative with respect to the norm, making a Banach algebra. The Banach algebra has a multiplicative identity element if and only if is a discrete group, namely the function that is 1 at the identity and zero elsewhere. In general, however, it has an approximate identity which is a net (or generalized sequence) indexed on a directed set such that

The Fourier transform takes convolution to multiplication, i.e. it is a homomorphism of abelian Banach algebras (of norm ≤ 1):

In particular, to every group character on corresponds a unique *multiplicative linear functional* on the group algebra defined by

It is an important property of the group algebra that these exhaust the set of non-trivial (that is, not identically zero) multiplicative linear functionals on the group algebra; see section 34 of ( Loomis 1953 ). This means the Fourier transform is a special case of the Gelfand transform.

As we have stated, the dual group of a locally compact abelian group is a locally compact abelian group in its own right and thus has a Haar measure, or more precisely a whole family of scale-related Haar measures.

**Theorem.**Choose a Haar measure on and let be the dual measure on as defined above. If is continuous with compact support then and- In particular, the Fourier transform is an isometry from the complex-valued continuous functions of compact support on to the -functions on (using the -norm with respect to μ for functions on and the -norm with respect to ν for functions on ).

Since the complex-valued continuous functions of compact support on are -dense, there is a unique extension of the Fourier transform from that space to a unitary operator

and we have the formula

Note that for non-compact locally compact groups the space does not contain , so the Fourier transform of general -functions on is "not" given by any kind of integration formula (or really any explicit formula). To define the Fourier transform one has to resort to some technical trick such as starting on a dense subspace like the continuous functions with compact support and then extending the isometry by continuity to the whole space. This unitary extension of the Fourier transform is what we mean by the Fourier transform on the space of square integrable functions.

The dual group also has an inverse Fourier transform in its own right; it can be characterized as the inverse (or adjoint, since it is unitary) of the Fourier transform. This is the content of the Fourier inversion formula which follows.

**Theorem.**The adjoint of the Fourier transform restricted to continuous functions of compact support is the inverse Fourier transform- where is the dual measure to .

In the case the dual group is naturally isomorphic to the group of integers and the Fourier transform specializes to the computation of coefficients of Fourier series of periodic functions.

If is a finite group, we recover the discrete Fourier transform. Note that this case is very easy to prove directly.

One important application of Pontryagin duality is the following characterization of compact abelian topological groups:

**Theorem**. A locally compact*abelian*group is compact if and only if the dual group is discrete. Conversely, is discrete if and only if is compact.

That being compact implies is discrete or that being discrete implies that is compact is an elementary consequence of the definition of the compact-open topology on and does not need Pontryagin duality. One uses Pontryagin duality to prove the converses.

The Bohr compactification is defined for any topological group , regardless of whether is locally compact or abelian. One use made of Pontryagin duality between compact abelian groups and discrete abelian groups is to characterize the Bohr compactification of an arbitrary abelian *locally compact* topological group. The *Bohr compactification* of is , where *H* has the group structure , but given the discrete topology. Since the inclusion map

is continuous and a homomorphism, the dual morphism

is a morphism into a compact group which is easily shown to satisfy the requisite universal property.

See also almost periodic function.

Pontryagin duality can also profitably be considered functorially. In what follows, **LCA** is the category of locally compact abelian groups and continuous group homomorphisms. The dual group construction of is a contravariant functor **LCA** → **LCA**, represented (in the sense of representable functors) by the circle group as In particular, the double dual functor is *covariant*. A categorical formulation of Pontryagin duality then states that the natural transformation between the identity functor on **LCA** and the double dual functor is an isomorphism.^{ [3] } Unwinding the notion of a natural transformation, this means that the maps are isomorphisms for any locally compact abelian group , and these isomorphisms are functorial in . This isomorphism is analogous to the double dual of finite-dimensional vector spaces (a special case, for real and complex vector spaces).

An immediate consequence of this formulation is another common categorical formulation of Pontryagin duality: the dual group functor is an equivalence of categories from **LCA** to **LCA**^{op}.

The duality interchanges the subcategories of discrete groups and compact groups. If is a ring and is a left – module, the dual group will become a right –module; in this way we can also see that discrete left –modules will be Pontryagin dual to compact right –modules. The ring of endomorphisms in **LCA** is changed by duality into its opposite ring (change the multiplication to the other order). For example, if is an infinite cyclic discrete group, is a circle group: the former has so this is true also of the latter.

Generalizations of Pontryagin duality are constructed in two main directions: for commutative topological groups that are not locally compact, and for noncommutative topological groups. The theories in these two cases are very different.

When is a Hausdorff abelian topological group, the group with the compact-open topology is a Hausdorff abelian topological group and the natural mapping from to its double-dual makes sense. If this mapping is an isomorphism, it is said that satisfies Pontryagin duality (or that is a *reflexive group*,^{ [4] } or a *reflective group*^{ [5] }). This has been extended in a number of directions beyond the case that is locally compact.^{ [6] }

In particular, Samuel Kaplan^{ [7] }^{ [8] } showed in 1948 and 1950 that arbitrary products and countable inverse limits of locally compact (Hausdorff) abelian groups satisfy Pontryagin duality. Note that an infinite product of locally compact non-compact spaces is not locally compact.

Later, in 1975, Rangachari Venkataraman^{ [9] } showed, among other facts, that every open subgroup of an abelian topological group which satisfies Pontryagin duality itself satisfies Pontryagin duality.

More recently, Sergio Ardanza-Trevijano and María Jesús Chasco^{ [10] } have extended the results of Kaplan mentioned above. They showed that direct and inverse limits of sequences of abelian groups satisfying Pontryagin duality also satisfy Pontryagin duality if the groups are metrizable or -spaces but not necessarily locally compact, provided some extra conditions are satisfied by the sequences.

However, there is a fundamental aspect that changes if we want to consider Pontryagin duality beyond the locally compact case. Elena Martín-Peinador^{ [11] } proved in 1995 that if is a Hausdorff abelian topological group that satisfies Pontryagin duality, and the natural evaluation pairing

is (jointly) continuous,^{ [12] } then is locally compact. As a corollary, all non-locally compact examples of Pontryagin duality are groups where the pairing is not (jointly) continuous.

Another way to generalize Pontryagin duality to wider classes of commutative topological groups is to endow the dual group with a bit different topology, namely the *topology of uniform convergence on totally bounded sets *. The groups satisfying the identity under this assumption^{ [13] } are called *stereotype groups*.^{ [5] } This class is also very wide (and it contains locally compact abelian groups), but it is narrower than the class of reflective groups.^{ [5] }

In 1952 Marianne F. Smith^{ [14] } noticed that Banach spaces and reflexive spaces, being considered as topological groups (with the additive group operation), satisfy Pontryagin duality. Later B. S. Brudovskiĭ,^{ [15] } William C. Waterhouse ^{ [16] } and K. Brauner^{ [17] } showed that this result can be extended to the class of all quasi-complete barreled spaces (in particular, to all Fréchet spaces). In the 1990s Sergei Akbarov^{ [18] } gave a description of the class of the topological vector spaces that satisfy a stronger property than the classical Pontryagin reflexivity, namely, the identity

where means the space of all linear continuous functionals endowed with the *topology of uniform convergence on totally bounded sets* in (and means the dual to in the same sense). The spaces of this class are called stereotype spaces, and the corresponding theory found a series of applications in Functional analysis and Geometry, including the generalization of Pontryagin duality for non-commutative topological groups.

For non-commutative locally compact groups the classical Pontryagin construction stops working for various reasons, in particular, because the characters don't always separate the points of , and the irreducible representations of are not always one-dimensional. At the same time it is not clear how to introduce multiplication on the set of irreducible unitary representations of , and it is even not clear whether this set is a good choice for the role of the dual object for . So the problem of constructing duality in this situation requires complete rethinking.

Theories built to date are divided into two main groups: the theories where the dual object has the same nature as the source one (like in the Pontryagin duality itself), and the theories where the source object and its dual differ from each other so radically that it is impossible to count them as objects of one class.

The second type theories were historically the first: soon after Pontryagin's work Tadao Tannaka (1938) and Mark Krein (1949) constructed a duality theory for arbitrary compact groups known now as the Tannaka–Krein duality.^{ [19] }^{ [20] } In this theory the dual object for a group is not a group but a category of its representations .

The theories of first type appeared later and the key example for them was the duality theory for finite groups.^{ [21] }^{ [22] } In this theory the category of finite groups is embedded by the operation of taking group algebra (over ) into the category of finite dimensional Hopf algebras, so that the Pontryagin duality functor turns into the operation of taking the dual vector space (which is a duality functor in the category of finite dimensional Hopf algebras).^{ [22] }

In 1973 Leonid I. Vainerman, George I. Kac, Michel Enock, and Jean-Marie Schwartz built a general theory of this type for all locally compact groups.^{ [23] } From the 1980s the research in this area was resumed after the discovery of quantum groups, to which the constructed theories began to be actively transferred.^{ [24] } These theories are formulated in the language of C*-algebras, or Von Neumann algebras, and one of its variants is the recent theory of locally compact quantum groups.^{ [25] }^{ [24] }

One of the drawbacks of these general theories, however, is that in them the objects generalizing the concept of group are not Hopf algebras in the usual algebraic sense.^{ [22] } This deficiency can be corrected (for some classes of groups) within the framework of duality theories constructed on the basis of the notion of envelope of topological algebra.^{ [22] }^{ [26] }

- ↑ Hewitt & Ross 1963, (24.2).
- ↑ Morris 1977, Chapter 4.
- ↑ Roeder, David W. (1974), "Category theory applied to Pontryagin duality",
*Pacific Journal of Mathematics*,**52**(2): 519–527, doi: 10.2140/pjm.1974.52.519 - ↑ Onishchik 1984.
- 1 2 3 Akbarov & Shavgulidze 2003.
- ↑ Chasco, Dikranjan & Martín-Peinador 2012.
- ↑ Kaplan 1948.
- ↑ Kaplan 1950.
- ↑ Venkataraman 1975.
- ↑ Ardanza-Trevijano & Chasco 2005.
- ↑ Martín-Peinador 1995.
- ↑ Joint continuousness means here that the map is continuous as a map between topological spaces, where is endowed with the topology of cartesian product. This result does not hold if the map is supposed to be separately continuous, or continuous in the stereotype sense.
- ↑ Where the second dual group is dual to in the same sense.
- ↑ Smith 1952.
- ↑ Brudovski 1967.
- ↑ Waterhouse 1968.
- ↑ Brauner 1973.
- ↑ Akbarov 2003.
- ↑ Hewitt & Ross 1970.
- ↑ Kirillov 1976.
- ↑ Kirillov 1976, 12.3.
- 1 2 3 4 Akbarov 2009.
- ↑ Enock & Schwartz 1992.
- 1 2 Timmermann 2008.
- ↑ Kustermans & Vaes 2000.
- ↑ Akbarov 2017. sfn error: multiple targets (2×): CITEREFAkbarov2017 (help)

In mathematics, specifically in measure theory, a **Borel measure** on a topological space is a measure that is defined on all open sets. Some authors require additional restrictions on the measure, as described below.

In mathematics, **convolution** is a mathematical operation on two functions that produces a third function that expresses how the shape of one is modified by the other. The term *convolution* refers to both the result function and to the process of computing it. It is defined as the integral of the product of the two functions after one is reversed and shifted. The integral is evaluated for all values of shift, producing the convolution function.

In mathematics, **profinite groups** are topological groups that are in a certain sense assembled from finite groups. They share many properties with their finite quotients: for example, both Lagrange's theorem and the Sylow theorems generalise well to profinite groups.

In mathematical analysis, the **Haar measure** assigns an "invariant volume" to subsets of locally compact topological groups, consequently defining an integral for functions on those groups.

In topology and related branches of mathematics, a topological space is called **locally compact** if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which every point has a compact neighborhood.

In mathematics, a **Fourier transform** (**FT**) is a mathematical transform that decomposes functions depending on space or time into functions depending on spatial or temporal frequency, such as the expression of a musical chord in terms of the volumes and frequencies of its constituent notes. The term *Fourier transform* refers to both the frequency domain representation and the mathematical operation that associates the frequency domain representation to a function of space or time.

In mathematics, the **Peter–Weyl theorem** is a basic result in the theory of harmonic analysis, applying to topological groups that are compact, but are not necessarily abelian. It was initially proved by Hermann Weyl, with his student Fritz Peter, in the setting of a compact topological group *G*. The theorem is a collection of results generalizing the significant facts about the decomposition of the regular representation of any finite group, as discovered by Ferdinand Georg Frobenius and Issai Schur.

In mathematics, the **Gelfand representation** in functional analysis has two related meanings:

In mathematics, the **Plancherel theorem** is a result in harmonic analysis, proven by Michel Plancherel in 1910. It states that the integral of a function's squared modulus is equal to the integral of the squared modulus of its frequency spectrum. That is, if is a function on the real line, and is its frequency spectrum, then

In several mathematical areas, including harmonic analysis, topology, and number theory, **locally compact abelian groups** are abelian groups which have a particularly convenient topology on them. For example, the group of integers, or the real numbers or the circle are locally compact abelian groups.

In mathematics, a **Radon measure**, named after Johann Radon, is a measure on the σ-algebra of Borel sets of a Hausdorff topological space *X* that is finite on all compact sets, outer regular on all Borel sets, and inner regular on open sets. These conditions guarantee that the measure is "compatible" with the topology of the space, and most measures used in mathematical analysis and in number theory are indeed Radon measures.

In mathematics, a **duality** translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often by means of an involution operation: if the dual of *A* is *B*, then the dual of *B* is *A*. Such involutions sometimes have fixed points, so that the dual of *A* is *A* itself. For example, Desargues' theorem is **self-dual** in this sense under the *standard duality in projective geometry*.

In Fourier analysis, a **multiplier operator** is a type of linear operator, or transformation of functions. These operators act on a function by altering its Fourier transform. Specifically they multiply the Fourier transform of a function by a specified function known as the **multiplier** or **symbol**. Occasionally, the term *multiplier operator* itself is shortened simply to *multiplier*. In simple terms, the multiplier reshapes the frequencies involved in any function. This class of operators turns out to be broad: general theory shows that a translation-invariant operator on a group which obeys some regularity conditions can be expressed as a multiplier operator, and conversely. Many familiar operators, such as translations and differentiation, are multiplier operators, although there are many more complicated examples such as the Hilbert transform.

In mathematics, a **locally compact group** is a topological group *G* for which the underlying topology is locally compact and Hausdorff. Locally compact groups are important because many examples of groups that arise throughout mathematics are locally compact and such groups have a natural measure called the Haar measure. This allows one to define integrals of Borel measurable functions on *G* so that standard analysis notions such as the Fourier transform and spaces can be generalized.

In mathematics, **Bochner's theorem** characterizes the Fourier transform of a positive finite Borel measure on the real line. More generally in harmonic analysis, Bochner's theorem asserts that under Fourier transform a continuous positive-definite function on a locally compact abelian group corresponds to a finite positive measure on the Pontryagin dual group.

In mathematics, a **Schwartz–Bruhat function**, named after Laurent Schwartz and François Bruhat, is a complex valued function on a locally compact abelian group, such as the adeles, that generalizes a Schwartz function on a real vector space. A **tempered distribution** is defined as a continuous linear functional on the space of Schwartz–Bruhat functions.

**Fourier** and related algebras occur naturally in the harmonic analysis of locally compact groups. They play an important role in the duality theories of these groups. The Fourier–Stieltjes algebra and the Fourier–Stieltjes transform on the Fourier algebra of a locally compact group were introduced by Pierre Eymard in 1964.

In mathematics, the **Fourier transform on finite groups** is a generalization of the discrete Fourier transform from cyclic to arbitrary finite groups.

In mathematics, **noncommutative harmonic analysis** is the field in which results from Fourier analysis are extended to topological groups that are not commutative. Since locally compact abelian groups have a well-understood theory, Pontryagin duality, which includes the basic structures of Fourier series and Fourier transforms, the major business of non-commutative harmonic analysis is usually taken to be the extension of the theory to all groups *G* that are locally compact. The case of compact groups is understood, qualitatively and after the Peter–Weyl theorem from the 1920s, as being generally analogous to that of finite groups and their character theory.

In functional analysis and related areas of mathematics a **Brauner space** is a complete compactly generated locally convex space having a sequence of compact sets such that every other compact set is contained in some .

- Dixmier, Jacques (1969).
*Les C*-algèbres et leurs Représentations*. Gauthier-Villars. ISBN 978-2-87647-013-2. - Enock, Michel; Schwartz, Jean-Marie (1992).
*Kac Algebras and Duality of Locally Compact Groups*. With a preface by Alain Connes. With a postface by Adrian Ocneanu. Berlin: Springer-Verlag. doi:10.1007/978-3-662-02813-1. ISBN 978-3-540-54745-7. MR 1215933. - Hewitt, Edwin; Ross, Kenneth A. (1963).
*Abstract Harmonic Analysis. Vol. I: Structure of topological groups. Integration theory, group representations*. Die Grundlehren der mathematischen Wissenschaften.**115**. Berlin-Göttingen-Heidelberg: Springer-Verlag. ISBN 978-0-387-94190-5. MR 0156915. - Hewitt, Edwin; Ross, Kenneth A. (1970).
*Abstract Harmonic Analysis*.**2**. ISBN 978-3-662-24595-8. MR 0262773. - Kirillov, Alexandre A. (1976) [1972].
*Elements of the theory of representations*. Grundlehren der Mathematischen Wissenschaften.**220**. Berlin, New York: Springer-Verlag. ISBN 978-0-387-07476-4. MR 0412321. - Loomis, Lynn H. (1953).
*An Introduction to Abstract Harmonic Analysis*. D. van Nostrand Co. ISBN 978-0486481234. - Morris, S.A. (1977).
*Pontryagin duality and the structure of locally compact Abelian groups*. Cambridge University Press. ISBN 978-0521215435. - Onishchik, A.L. (1984).
*Pontrjagin duality*.*Encyclopedia of Mathematics*.**4**. pp. 481–482. ISBN 978-1402006098. - Reiter, Hans (1968).
*Classical Harmonic Analysis and Locally Compact Groups*. ISBN 978-0198511892. - Rudin, Walter (1962).
*Fourier Analysis on Groups*. D. van Nostrand Co. ISBN 978-0471523642. - Timmermann, T. (2008).
*An Invitation to Quantum Groups and Duality - From Hopf Algebras to Multiplicative Unitaries and Beyond*. EMS Textbooks in Mathematics, European Mathematical Society. ISBN 978-3-03719-043-2. - Kustermans, J.; Vaes, S. (2000). "Locally Compact Quantum Groups".
*Annales Scientifiques de l'École Normale Supérieure*.**33**(6): 837–934. doi:10.1016/s0012-9593(00)01055-7. - Ardanza-Trevijano, Sergio; Chasco, María Jesús (2005). "The Pontryagin duality of sequential limits of topological Abelian groups".
*Journal of Pure and Applied Algebra*.**202**(1–3): 11–21. doi:10.1016/j.jpaa.2005.02.006. hdl: 10171/1586 . MR 2163398. - Chasco, María Jesús; Dikranjan, Dikran; Martín-Peinador, Elena (2012). "A survey on reflexivity of abelian topological groups".
*Topology and Its Applications*.**159**(9): 2290–2309. doi: 10.1016/j.topol.2012.04.012 . MR 2921819. - Kaplan, Samuel (1948). "Extensions of the Pontrjagin duality. Part I: infinite products".
*Duke Mathematical Journal*.**15**: 649–658. doi:10.1215/S0012-7094-48-01557-9. MR 0026999. - Kaplan, Samuel (1950). "Extensions of the Pontrjagin duality. Part II: direct and inverse limits".
*Duke Mathematical Journal*.**17**: 419–435. doi:10.1215/S0012-7094-50-01737-6. MR 0049906. - Venkataraman, Rangachari (1975). "Extensions of Pontryagin Duality".
*Mathematische Zeitschrift*.**143**(2): 105–112. doi:10.1007/BF01187051. S2CID 123627326. - Martin-Peinador, Elena (1995). "A reflexible admissible topological group must be locally compact".
*Proceedings of the American Mathematical Society*.**123**(11): 3563–3566. doi:10.2307/2161108. hdl: 10338.dmlcz/127641 . JSTOR 2161108. - Smith, Marianne F. (1952). "The Pontrjagin duality theorem in linear spaces".
*Annals of Mathematics*.**56**(2): 248–253. doi:10.2307/1969798. JSTOR 1969798. MR 0049479. - Brudovskiĭ, B. S. (1967). "On k- and c-reflexivity of locally convex vector spaces".
*Lithuanian Mathematical Journal*.**7**(1): 17–21. - Waterhouse, William C. (1968). "Dual groups of vector spaces".
*Pacific Journal of Mathematics*.**26**(1): 193–196. doi: 10.2140/pjm.1968.26.193 . - Brauner, Kalman (1973). "Duals of Fréchet spaces and a generalization of the Banach–Dieudonné theorem".
*Duke Mathematical Journal*.**40**(4): 845–855. doi:10.1215/S0012-7094-73-04078-7. - Akbarov, S.S. (2003). "Pontryagin duality in the theory of topological vector spaces and in topological algebra".
*Journal of Mathematical Sciences*.**113**(2): 179–349. doi:10.1023/A:1020929201133. S2CID 115297067. - Akbarov, Sergei S.; Shavgulidze, Evgeniy T. (2003). "On two classes of spaces reflexive in the sense of Pontryagin".
*Matematicheskii Sbornik*.**194**(10): 3–26. - Akbarov, Sergei S. (2009). "Holomorphic functions of exponential type and duality for Stein groups with algebraic connected component of identity".
*Journal of Mathematical Sciences*.**162**(4): 459–586. arXiv: 0806.3205 . doi:10.1007/s10958-009-9646-1. S2CID 115153766. - Akbarov, Sergei S. (2017). "Continuous and smooth envelopes of topological algebras. Part 1".
*Journal of Mathematical Sciences*.**227**(5): 531–668. arXiv: 1303.2424 . doi:10.1007/s10958-017-3599-6. MR 3790317. S2CID 126018582. - Akbarov, Sergei S. (2017). "Continuous and smooth envelopes of topological algebras. Part 2".
*Journal of Mathematical Sciences*.**227**(6): 669–789. arXiv: 1303.2424 . doi:10.1007/s10958-017-3600-4. MR 3796205. S2CID 128246373.

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.