In mathematics, the question of whether the Fourier series of a periodic function converges to a given function is researched by a field known as classical harmonic analysis, a branch of pure mathematics. Convergence is not necessarily given in the general case, and certain criteria must be met for convergence to occur.
Determination of convergence requires the comprehension of pointwise convergence, uniform convergence, absolute convergence, Lp spaces, summability methods and the Cesàro mean.
Consider f an integrable function on the interval [0, 2π]. For such an f the Fourier coefficients are defined by the formula
It is common to describe the connection between f and its Fourier series by
The notation ~ here means that the sum represents the function in some sense. To investigate this more carefully, the partial sums must be defined:
The question of whether a Fourier series converges is: Do the functions (which are functions of the variable t we omitted in the notation) converge to f and in which sense? Are there conditions on f ensuring this or that type of convergence?
Before continuing, the Dirichlet kernel must be introduced. Taking the formula for , inserting it into the formula for and doing some algebra gives that
where ∗ stands for the periodic convolution and is the Dirichlet kernel, which has an explicit formula,
The Dirichlet kernel is not a positive kernel, and in fact, its norm diverges, namely
a fact that plays a crucial role in the discussion. The norm of Dn in L1(T) coincides with the norm of the convolution operator with Dn, acting on the space C(T) of periodic continuous functions, or with the norm of the linear functional f → (Snf)(0) on C(T). Hence, this family of linear functionals on C(T) is unbounded, when n → ∞.
In applications, it is often useful to know the size of the Fourier coefficient.
If is an absolutely continuous function,
for a constant that only depends on .
If is a bounded variation function, [1]
In particular, this applies to absolutely continuous functions, where .
If
If and has modulus of continuity [2] ,
and therefore, if is in the α-Hölder class [3]
There are many known sufficient conditions for the Fourier series of a function to converge at a given point x, for example if the function is differentiable at x. Even a jump discontinuity does not pose a problem: if the function has left and right derivatives at x, then the Fourier series converges to the average of the left and right limits (but see Gibbs phenomenon).
The Dirichlet–Dini Criterion (see Dirichlet conditions and Dini test) states that: [4] if ƒ is 2π–periodic, locally integrable and satisfies
then (Snf)(x0) converges to ℓ. This implies that for any function f of any Hölder class α > 0, the Fourier series converges everywhere to f(x).
It is also known that for any periodic function of bounded variation, the Fourier series converges. See also Dini test. In general, the most common criteria for pointwise convergence of a periodic function f are as follows:
There exist continuous functions whose Fourier series converges pointwise but not uniformly. [8]
However, the Fourier series of a continuous function need not converge pointwise. Perhaps the easiest proof uses the non-boundedness of Dirichlet's kernel in L1(T) and the Banach–Steinhaus uniform boundedness principle. As typical for existence arguments invoking the Baire category theorem, this proof is nonconstructive. It shows that the family of continuous functions whose Fourier series converges at a given x is of first Baire category, in the Banach space of continuous functions on the circle.
So in some sense pointwise convergence is atypical, and for most continuous functions the Fourier series does not converge at a given point. However Carleson's theorem shows that for a given continuous function the Fourier series converges almost everywhere.
It is also possible to give explicit examples of a continuous function whose Fourier series diverges at 0: for instance, the even and 2π-periodic function f defined for all x in [0,π] by [9]
In this example it is easy to show how the series behaves at zero. Because the function is even the Fourier series contains only cosines:
The coefficients are:
As m increases, the coefficients will be positive and increasing until they reach a value of about at for some n and then become negative (starting with a value around ) and getting smaller, before starting a new such wave. At the Fourier series is simply the running sum of and this builds up to around
in the nth wave before returning to around zero, showing that the series does not converge at zero but reaches higher and higher peaks.
Suppose , and has modulus of continuity ; then the partial sums of the Fourier series converge to the function with speed [10]
for a constant that does not depend upon , nor , nor .
This theorem, first proved by D Jackson, tells, for example, that if satisfies the -Hölder condition, then
If is periodic, continuous and of bounded variation, then the Fourier series of converges uniformly, [11] but not necessarily absolutely, [12] to .
A function ƒ has an absolutely converging Fourier series if
Obviously, if this condition holds then converges absolutely for every t and on the other hand, it is enough that converges absolutely for even one t, then this condition holds. In other words, for absolute convergence there is no issue of where the sum converges absolutely — if it converges absolutely at one point then it does so everywhere.
The family of all functions with absolutely converging Fourier series is a Banach algebra (the operation of multiplication in the algebra is a simple multiplication of functions). It is called the Wiener algebra, after Norbert Wiener, who proved that if ƒ has absolutely converging Fourier series and is never zero, then 1/ƒ has absolutely converging Fourier series. The original proof of Wiener's theorem was difficult; a simplification using the theory of Banach algebras was given by Israel Gelfand. Finally, a short elementary proof was given by Donald J. Newman in 1975.
Sergei Bernstein's theorem [13] states that, if belongs to a α-Hölder class for α > 1/2 then
for the constant in the Hölder condition, a constant only dependent on ; is the norm of the Krein algebra. Notice that the 1/2 here is essential—there is an example of a 1/2-Hölder functions due to Hardy and Littlewood, [14] which do not belong to the Wiener algebra. Besides, this theorem cannot improve the best known bound on the size of the Fourier coefficient of a α-Hölder function—that is only and then not summable.
Zygmund's theorem states that, if ƒ is of bounded variation and belongs to a α-Hölder class for some α > 0, it belongs to the Wiener algebra. [15]
The simplest case is that of L2, which is a direct transcription of general Hilbert space results. According to the Riesz–Fischer theorem, if ƒ is square-integrable then
i.e., converges to ƒ in the norm of L2. It is easy to see that the converse is also true: if the limit above is zero, ƒ must be in L2. So this is an if and only if condition.
If 2 in the exponents above is replaced with some p, the question becomes much harder. It turns out that the convergence still holds if 1 < p < ∞. In other words, for ƒ in Lp, converges to ƒ in the Lp norm. [16] The original proof uses properties of holomorphic functions and Hardy spaces, and another proof, due to Salomon Bochner relies upon the Riesz–Thorin interpolation theorem. For p = 1 and infinity, the result is not true. The construction of an example of divergence in L1 was first done by Andrey Kolmogorov (see below). For infinity, the result is a corollary of the uniform boundedness principle.
If the partial summation operator SN is replaced by a suitable summability kernel (for example the Fejér sum obtained by convolution with the Fejér kernel), basic functional analytic techniques can be applied to show that norm convergence holds for 1 ≤ p < ∞.
The problem whether the Fourier series of any continuous function converges almost everywhere was posed by Nikolai Lusin in the 1920s. It was resolved positively in 1966 by Lennart Carleson. His result, now known as Carleson's theorem, tells the Fourier expansion of any function in L2 converges almost everywhere. Later on, Richard Hunt generalized this to Lp for any p > 1.
Contrariwise, Andrey Kolmogorov, as a student at the age of 19, in his very first scientific work, constructed an example of a function in L1 whose Fourier series diverges almost everywhere (later improved to diverge everywhere).
Jean-Pierre Kahane and Yitzhak Katznelson proved that for any given set E of measure zero, there exists a continuous function ƒ such that the Fourier series of ƒ fails to converge on any point of E.
Does the sequence 0,1,0,1,0,1,... (the partial sums of Grandi's series) converge to 1/2? This does not seem like a very unreasonable generalization of the notion of convergence. Hence we say that any sequence is Cesàro summable to some a if
Where with we denote the kth partial sum:
It is not difficult to see that if a sequence converges to some a then it is also Cesàro summable to it.
To discuss summability of Fourier series, we must replace with an appropriate notion. Hence we define
and ask: does converge to f? is no longer associated with Dirichlet's kernel, but with Fejér's kernel, namely
where is Fejér's kernel,
The main difference is that Fejér's kernel is a positive kernel. Fejér's theorem states that the above sequence of partial sums converge uniformly to ƒ. This implies much better convergence properties
Results about summability can also imply results about regular convergence. For example, we learn that if ƒ is continuous at t, then the Fourier series of ƒ cannot converge to a value different from ƒ(t). It may either converge to ƒ(t) or diverge. This is because, if converges to some value x, it is also summable to it, so from the first summability property above, x = ƒ(t).
The order of growth of Dirichlet's kernel is logarithmic, i.e.
See Big O notation for the notation O(1). The actual value is both difficult to calculate (see Zygmund 8.3) and of almost no use. The fact that for some constant c we have
is quite clear when one examines the graph of Dirichlet's kernel. The integral over the n-th peak is bigger than c/n and therefore the estimate for the harmonic sum gives the logarithmic estimate.
This estimate entails quantitative versions of some of the previous results. For any continuous function f and any t one has
However, for any order of growth ω(n) smaller than log, this no longer holds and it is possible to find a continuous function f such that for some t,
The equivalent problem for divergence everywhere is open. Sergei Konyagin managed to construct an integrable function such that for every t one has
It is not known whether this example is best possible. The only bound from the other direction known is log n.
Upon examining the equivalent problem in more than one dimension, it is necessary to specify the precise order of summation one uses. For example, in two dimensions, one may define
which are known as "square partial sums". Replacing the sum above with
lead to "circular partial sums". The difference between these two definitions is quite notable. For example, the norm of the corresponding Dirichlet kernel for square partial sums is of the order of while for circular partial sums it is of the order of .
Many of the results true for one dimension are wrong or unknown in multiple dimensions. In particular, the equivalent of Carleson's theorem is still open for circular partial sums. Almost everywhere convergence of "square partial sums" (as well as more general polygonal partial sums) in multiple dimensions was established around 1970 by Charles Fefferman.
In mathematical analysis, the Dirac delta function, also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Thus it can be represented heuristically as
In mathematics, the Fourier transform (FT) is an integral transform that takes a function as input and outputs another function that describes the extent to which various frequencies are present in the original function. The output of the transform is a complex-valued function of frequency. The term Fourier transform refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made, the output of the operation is sometimes called the frequency domain representation of the original function. The Fourier transform is analogous to decomposing the sound of a musical chord into the intensities of its constituent pitches.
A Fourier series is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series, but not all trigonometric series are Fourier series. By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This application is possible because the derivatives of trigonometric functions fall into simple patterns. Fourier series cannot be used to approximate arbitrary functions, because most functions have infinitely many terms in their Fourier series, and the series do not always converge. Well-behaved functions, for example smooth functions, have Fourier series that converge to the original function. The coefficients of the Fourier series are determined by integrals of the function multiplied by trigonometric functions, described in Common forms of the Fourier series below.
In mathematics, the Gibbs phenomenon is the oscillatory behavior of the Fourier series of a piecewise continuously differentiable periodic function around a jump discontinuity. The th partial Fourier series of the function produces large peaks around the jump which overshoot and undershoot the function values. As more sinusoids are used, this approximation error approaches a limit of about 9% of the jump, though the infinite Fourier series sum does eventually converge almost everywhere except points of discontinuity.
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up more than a century later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his zeta function and proved its basic properties. The problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem.
In mathematics and its applications, a Sturm–Liouville problem is a second-order linear ordinary differential equation of the form for given functions , and , together with some boundary conditions at extreme values of . The goals of a given Sturm–Liouville problem are:
In mathematics, the Poisson summation formula is an equation that relates the Fourier series coefficients of the periodic summation of a function to values of the function's continuous Fourier transform. Consequently, the periodic summation of a function is completely defined by discrete samples of the original function's Fourier transform. And conversely, the periodic summation of a function's Fourier transform is completely defined by discrete samples of the original function. The Poisson summation formula was discovered by Siméon Denis Poisson and is sometimes called Poisson resummation.
In mathematics and signal processing, the Hilbert transform is a specific singular integral that takes a function, u(t) of a real variable and produces another function of a real variable H(u)(t). The Hilbert transform is given by the Cauchy principal value of the convolution with the function (see § Definition). The Hilbert transform has a particularly simple representation in the frequency domain: It imparts a phase shift of ±90° (π/2 radians) to every frequency component of a function, the sign of the shift depending on the sign of the frequency (see § Relationship with the Fourier transform). The Hilbert transform is important in signal processing, where it is a component of the analytic representation of a real-valued signal u(t). The Hilbert transform was first introduced by David Hilbert in this setting, to solve a special case of the Riemann–Hilbert problem for analytic functions.
In functional analysis, a reproducing kernel Hilbert space (RKHS) is a Hilbert space of functions in which point evaluation is a continuous linear functional. Specifically, a Hilbert space of functions from a set is an RKHS if, for each , there exists a function such that for all ,
In mathematics, the Fejér kernel is a summability kernel used to express the effect of Cesàro summation on Fourier series. It is a non-negative kernel, giving rise to an approximate identity. It is named after the Hungarian mathematician Lipót Fejér (1880–1959).
In mathematics, a Dirac comb is a periodic function with the formula for some given period . Here t is a real variable and the sum extends over all integers k. The Dirac delta function and the Dirac comb are tempered distributions. The graph of the function resembles a comb, hence its name and the use of the comb-like Cyrillic letter sha (Ш) to denote the function.
In mathematics, in the area of complex analysis, Nachbin's theorem is a result used to establish bounds on the growth rates for analytic functions. In particular, Nachbin's theorem may be used to give the domain of convergence of the generalized Borel transform, also called Nachbin summation.
In mathematics, Fejér's theorem, named after Hungarian mathematician Lipót Fejér, states the following:
In mathematics, Maass forms or Maass wave forms are studied in the theory of automorphic forms. Maass forms are complex-valued smooth functions of the upper half plane, which transform in a similar way under the operation of a discrete subgroup of as modular forms. They are eigenforms of the hyperbolic Laplace operator defined on and satisfy certain growth conditions at the cusps of a fundamental domain of . In contrast to modular forms, Maass forms need not be holomorphic. They were studied first by Hans Maass in 1949.
In mathematical analysis, the Dirichlet kernel, named after the German mathematician Peter Gustav Lejeune Dirichlet, is the collection of periodic functions defined as
The Mehler kernel is a complex-valued function found to be the propagator of the quantum harmonic oscillator.
In mathematical analysis, the Szegő limit theorems describe the asymptotic behaviour of the determinants of large Toeplitz matrices. They were first proved by Gábor Szegő.
In mathematics, singular integral operators of convolution type are the singular integral operators that arise on Rn and Tn through convolution by distributions; equivalently they are the singular integral operators that commute with translations. The classical examples in harmonic analysis are the harmonic conjugation operator on the circle, the Hilbert transform on the circle and the real line, the Beurling transform in the complex plane and the Riesz transforms in Euclidean space. The continuity of these operators on L2 is evident because the Fourier transform converts them into multiplication operators. Continuity on Lp spaces was first established by Marcel Riesz. The classical techniques include the use of Poisson integrals, interpolation theory and the Hardy–Littlewood maximal function. For more general operators, fundamental new techniques, introduced by Alberto Calderón and Antoni Zygmund in 1952, were developed by a number of authors to give general criteria for continuity on Lp spaces. This article explains the theory for the classical operators and sketches the subsequent general theory.
Schlömilch's series is a Fourier series type expansion of twice continuously differentiable function in the interval in terms of the Bessel function of the first kind, named after the German mathematician Oskar Schlömilch, who derived the series in 1857. The real-valued function has the following expansion:
In mathematics, Wiener's lemma is a well-known identity which relates the asymptotic behaviour of the Fourier coefficients of a Borel measure on the circle to its atomic part. This result admits an analogous statement for measures on the real line. It was first discovered by Norbert Wiener.