Conservative vector field

Last updated

In vector calculus, a conservative vector field is a vector field that is the gradient of some function. [1] A conservative vector field has the property that its line integral is path independent; the choice of path between two points does not change the value of the line integral. Path independence of the line integral is equivalent to the vector field under the line integral being conservative. A conservative vector field is also irrotational; in three dimensions, this means that it has vanishing curl. An irrotational vector field is necessarily conservative provided that the domain is simply connected.

Contents

Conservative vector fields appear naturally in mechanics: They are vector fields representing forces of physical systems in which energy is conserved. [2] For a conservative system, the work done in moving along a path in a configuration space depends on only the endpoints of the path, so it is possible to define potential energy that is independent of the actual path taken.

Informal treatment

In a two- and three-dimensional space, there is an ambiguity in taking an integral between two points as there are infinitely many paths between the two points—apart from the straight line formed between the two points, one could choose a curved path of greater length as shown in the figure. Therefore, in general, the value of the integral depends on the path taken. However, in the special case of a conservative vector field, the value of the integral is independent of the path taken, which can be thought of as a large-scale cancellation of all elements that do not have a component along the straight line between the two points. To visualize this, imagine two people climbing a cliff; one decides to scale the cliff by going vertically up it, and the second decides to walk along a winding path that is longer in length than the height of the cliff, but at only a small angle to the horizontal. Although the two hikers have taken different routes to get up to the top of the cliff, at the top, they will have both gained the same amount of gravitational potential energy. This is because a gravitational field is conservative.

Depiction of two possible paths to integrate. In green is the simplest possible path; blue shows a more convoluted curve Pathdependence.png
Depiction of two possible paths to integrate. In green is the simplest possible path; blue shows a more convoluted curve

Intuitive explanation

M. C. Escher's lithograph print Ascending and Descending illustrates a non-conservative vector field, impossibly made to appear to be the gradient of the varying height above ground (gravitational potential) as one moves along the staircase. The force field experienced by the one moving on the staircase is non-conservative in that one can return to the starting point while ascending more than one descends or vice versa, resulting in nonzero work done by gravity. On a real staircase, the height above the ground is a scalar potential field: one has to go upward exactly as much as one goes downward in order to return to the same place, in which case the work by gravity totals to zero. This suggests path-independence of work done on the staircase; equivalently, the force field experienced is conservative (see the later section: Path independence and conservative vector field). The situation depicted in the print is impossible.

Definition

A vector field , where is an open subset of , is said to be conservative if there exists a (continuously differentiable) scalar field [3] on such that

Here, denotes the gradient of . Since is continuously differentiable, is continuous. When the equation above holds, is called a scalar potential for .

The fundamental theorem of vector calculus states that any vector field can be expressed as the sum of a conservative vector field and a solenoidal field.

Path independence and conservative vector field

Path independence

A line integral of a vector field is said to be path-independent if it depends on only two integral path endpoints regardless of which path between them is chosen: [4]

for any pair of integral paths and between a given pair of path endpoints in .

The path independence is also equivalently expressed as

for any piecewise smooth closed path in where the two endpoints are coincident. Two expressions are equivalent since any closed path can be made by two path; from an endpoint to another endpoint , and from to , so

where is the reverse of and the last equality holds due to the path independence

Conservative vector field

A key property of a conservative vector field is that its integral along a path depends on only the endpoints of that path, not the particular route taken. In other words, if it is a conservative vector field, then its line integral is path-independent. Suppose that for some (continuously differentiable) scalar field [3] over as an open subset of (so is a conservative vector field that is continuous) and is a differentiable path (i.e., it can be parameterized by a differentiable function) in with an initial point and a terminal point . Then the gradient theorem (also called fundamental theorem of calculus for line integrals) states that

This holds as a consequence of the definition of a line integral, the chain rule, and the second fundamental theorem of calculus. in the line integral is an exact differential for an orthogonal coordinate system (e.g., Cartesian, cylindrical, or spherical coordinates). Since the gradient theorem is applicable for a differentiable path, the path independence of a conservative vector field over piecewise-differential curves is also proved by the proof per differentiable curve component. [5]

So far it has been proven that a conservative vector field is line integral path-independent. Conversely, if a continuous vector field is (line integral) path-independent, then it is a conservative vector field, so the following biconditional statement holds: [4]

For a continuous vector field , where is an open subset of , it is conservative if and only if its line integral along a path in is path-independent, meaning that the line integral depends on only both path endpoints regardless of which path between them is chosen.

The proof of this converse statement is the following.

Line integral paths used to prove the following statement: if the line integral of a vector field is path-independent, then the vector field is a conservative vector field. Line Integral paths to prove the Relation between Path Independence and Conservative Vector Field, 2022-03-13.png
Line integral paths used to prove the following statement: if the line integral of a vector field is path-independent, then the vector field is a conservative vector field.

is a continuous vector field which line integral is path-independent. Then, let's make a function defined as

over an arbitrary path between a chosen starting point and an arbitrary point . Since it is path-independent, it depends on only and regardless of which path between these points is chosen.

Let's choose the path shown in the left of the right figure where a 2-dimensional Cartesian coordinate system is used. The second segment of this path is parallel to the axis so there is no change along the axis. The line integral along this path is

By the path independence, its partial derivative with respect to (for to have partial derivatives, needs to be continuous.) is

since and are independent to each other. Let's express as where and are unit vectors along the and axes respectively, then, since ,

where the last equality is from the second fundamental theorem of calculus.

A similar approach for the line integral path shown in the right of the right figure results in so

is proved for the 2-dimensional Cartesian coordinate system. This proof method can be straightforwardly expanded to a higher dimensional orthogonal coordinate system (e.g., a 3-dimensional spherical coordinate system) so the converse statement is proved. Another proof is found here as the converse of the gradient theorem.

Irrotational vector fields

The above vector field
v
=
(
-
y
x
2
+
y
2
,
x
x
2
+
y
2
,
0
)
{\displaystyle \mathbf {v} =\left(-{\frac {y}{x^{2}+y^{2}}},{\frac {x}{x^{2}+y^{2}}},0\right)}
defined on
U
=
R
3
\
{
(
0
,
0
,
z
)
|
z
[?]
R
}
{\displaystyle U=\mathbb {R} ^{3}\setminus \{(0,0,z)\mid z\in \mathbb {R} \}}
, i.e.,
R
3
{\displaystyle \mathbb {R} ^{3}}
with removing all coordinates on the
z
{\displaystyle z}
-axis (so not a simply connected space), has zero curl in
U
{\displaystyle U}
and is thus irrotational. However, it is not conservative and does not have path independence. Irrotational vector field.svg
The above vector field defined on , i.e., with removing all coordinates on the -axis (so not a simply connected space), has zero curl in and is thus irrotational. However, it is not conservative and does not have path independence.

Let (3-dimensional space), and let be a (continuously differentiable) vector field, with an open subset of . Then is called irrotational if its curl is everywhere in , i.e., if

For this reason, such vector fields are sometimes referred to as curl-free vector fields or curl-less vector fields. They are also referred to as longitudinal vector fields.

It is an identity of vector calculus that for any (continuously differentiable up to the 2nd derivative) scalar field on , we have

Therefore, every conservative vector field in is also an irrotational vector field in . This result can be easily proved by expressing in a Cartesian coordinate system with Schwarz's theorem (also called Clairaut's theorem on equality of mixed partials).

Provided that is a simply connected open space (roughly speaking, a single piece open space without a hole within it), the converse of this is also true: Every irrotational vector field in a simply connected open space is a conservative vector field in .

The above statement is not true in general if is not simply connected. Let be with removing all coordinates on the -axis (so not a simply connected space), i.e., . Now, define a vector field on by

Then has zero curl everywhere in ( at everywhere in ), i.e., is irrotational. However, the circulation of around the unit circle in the -plane is ; in polar coordinates, , so the integral over the unit circle is

Therefore, does not have the path-independence property discussed above so is not conservative even if since where is defined is not a simply connected open space.

Say again, in a simply connected open region, an irrotational vector field has the path-independence property (so as conservative). This can be proved directly by using Stokes' theorem,

for any smooth oriented surface which boundary is a simple closed path . So, it is concluded that In a simply connected open region, anyvector field that has the path-independence property (so it is a conservative vector field.) must also be irrotational and vise versa.

Abstraction

More abstractly, in the presence of a Riemannian metric, vector fields correspond to differential -forms. The conservative vector fields correspond to the exact -forms, that is, to the forms which are the exterior derivative of a function (scalar field) on . The irrotational vector fields correspond to the closed -forms, that is, to the -forms such that . As , any exact form is closed, so any conservative vector field is irrotational. Conversely, all closed -forms are exact if is simply connected.

Vorticity

The vorticity of a vector field can be defined by:

The vorticity of an irrotational field is zero everywhere. [6] Kelvin's circulation theorem states that a fluid that is irrotational in an inviscid flow will remain irrotational. This result can be derived from the vorticity transport equation, obtained by taking the curl of the Navier–Stokes equations.

For a two-dimensional field, the vorticity acts as a measure of the local rotation of fluid elements. The vorticity does not imply anything about the global behavior of a fluid. It is possible for a fluid that travels in a straight line to have vorticity, and it is possible for a fluid that moves in a circle to be irrotational.

Conservative forces

Examples of potential and gradient fields in physics:
.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
Scalar fields, scalar potentials:
VG, gravitational potential
Wpot, (gravitational or electrostatic) potential energy
VC, Coulomb potential
Vector fields, gradient fields:
aG, gravitational acceleration
F, (gravitational or electrostatic) force
E, electric field strength Conservative fields.png
Examples of potential and gradient fields in physics:
  •   Scalar fields, scalar potentials:
    • VG, gravitational potential
    • Wpot, (gravitational or electrostatic) potential energy
    • VC, Coulomb potential
  •   Vector fields, gradient fields:
    • aG, gravitational acceleration
    • F, (gravitational or electrostatic) force
    • E, electric field strength

If the vector field associated to a force is conservative, then the force is said to be a conservative force.

The most prominent examples of conservative forces are gravitational force (associated with a gravitational field) and electric force (associated with an electrostatic field). According to Newton's law of gravitation, a gravitational force acting on a mass due to a mass located at a distance from , obeys the equation

where is the gravitational constant and is a unit vector pointing from toward . The force of gravity is conservative because , where

is the gravitational potential energy. In other words, the gravitation field associated with the gravitational force is the gradient of the gravitation potential associated with the gravitational potential energy . It can be shown that any vector field of the form is conservative, provided that is integrable.

For conservative forces, path independence can be interpreted to mean that the work done in going from a point to a point is independent of the moving path chosen (dependent on only the points and ), and that the work done in going around a simple closed loop is :

The total energy of a particle moving under the influence of conservative forces is conserved, in the sense that a loss of potential energy is converted to the equal quantity of kinetic energy, or vice versa.

See also

Related Research Articles

<span class="mw-page-title-main">Curl (mathematics)</span> Circulation density in a vector field

In vector calculus, the curl, also known as rotor, is a vector operator that describes the infinitesimal circulation of a vector field in three-dimensional Euclidean space. The curl at a point in the field is represented by a vector whose length and direction denote the magnitude and axis of the maximum circulation. The curl of a field is formally defined as the circulation density at each point of the field.

<span class="mw-page-title-main">Divergence</span> Vector operator in vector calculus

In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.

<span class="mw-page-title-main">Potential energy</span> Energy held by an object because of its position relative to other objects

In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors. The term potential energy was introduced by the 19th-century Scottish engineer and physicist William Rankine, although it has links to the ancient Greek philosopher Aristotle's concept of potentiality.

<span class="mw-page-title-main">Laplace's equation</span> Second-order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Potential flow</span> Velocity field as the gradient of a scalar function

In fluid dynamics, potential flow or irrotational flow refers to a description of a fluid flow with no vorticity in it. Such a description typically arises in the limit of vanishing viscosity, i.e., for an inviscid fluid and with no vorticity present in the flow.

In vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem, is a theorem relating the flux of a vector field through a closed surface to the divergence of the field in the volume enclosed.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

<span class="mw-page-title-main">Poisson's equation</span> Expression frequently encountered in mathematical physics, generalization of Laplaces equation

Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics. For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate electrostatic or gravitational (force) field. It is a generalization of Laplace's equation, which is also frequently seen in physics. The equation is named after French mathematician and physicist Siméon Denis Poisson.

In fluid dynamics, Stokes' law is an empirical law for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.

In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D bounded by C. It is the two-dimensional special case of Stokes' theorem.

<span class="mw-page-title-main">Scalar potential</span> When potential energy difference depends only on displacement

In mathematical physics, scalar potential, simply stated, describes the situation where the difference in the potential energies of an object in two different positions depends only on the positions, not upon the path taken by the object in traveling from one position to the other. It is a scalar field in three-space: a directionless value (scalar) that depends only on its location. A familiar example is potential energy due to gravity.

Geometrical optics, or ray optics, is a model of optics that describes light propagation in terms of rays. The ray in geometrical optics is an abstraction useful for approximating the paths along which light propagates under certain circumstances.

In mathematics, Green's identities are a set of three identities in vector calculus relating the bulk with the boundary of a region on which differential operators act. They are named after the mathematician George Green, who discovered Green's theorem.

In calculus, the Leibniz integral rule for differentiation under the integral sign states that for an integral of the form

The following are important identities involving derivatives and integrals in vector calculus.

The gradient theorem, also known as the fundamental theorem of calculus for line integrals, says that a line integral through a gradient field can be evaluated by evaluating the original scalar field at the endpoints of the curve. The theorem is a generalization of the second fundamental theorem of calculus to any curve in a plane or space rather than just the real line.

In physics, Gauss's law for gravity, also known as Gauss's flux theorem for gravity, is a law of physics that is equivalent to Newton's law of universal gravitation. It is named after Carl Friedrich Gauss. It states that the flux of the gravitational field over any closed surface is proportional to the mass enclosed. Gauss's law for gravity is often more convenient to work from than Newton's law.

<span class="mw-page-title-main">Stokes' theorem</span> Theorem in vector calculus

Stokes' theorem, also known as the Kelvin–Stokes theorem after Lord Kelvin and George Stokes, the fundamental theorem for curls or simply the curl theorem, is a theorem in vector calculus on . Given a vector field, the theorem relates the integral of the curl of the vector field over some surface, to the line integral of the vector field around the boundary of the surface. The classical theorem of Stokes can be stated in one sentence: The line integral of a vector field over a loop is equal to the surface integral of its curl over the enclosed surface. It is illustrated in the figure, where the direction of positive circulation of the bounding contour ∂Σ, and the direction n of positive flux through the surface Σ, are related by a right-hand-rule. For the right hand the fingers circulate along ∂Σ and the thumb is directed along n.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

References

  1. Marsden, Jerrold; Tromba, Anthony (2003). Vector calculus (Fifth ed.). W.H.Freedman and Company. pp. 550–561.
  2. George B. Arfken and Hans J. Weber, Mathematical Methods for Physicists, 6th edition, Elsevier Academic Press (2005)
  3. 1 2 For to be path-independent, is not necessarily continuously differentiable, the condition of being differentiable is enough, since the Gradient theorem, that proves the path independence of , does not require to be continuously differentiable. There must be a reason for the definition of conservative vector fields to require to be continuously differentiable.
  4. 1 2 Stewart, James (2015). "16.3 The Fundamental Theorem of Line Integrals"". Calculus (8th ed.). Cengage Learning. pp. 1127–1134. ISBN   978-1-285-74062-1.
  5. Need to verify if exact differentials also exist for non-orthogonal coordinate systems.
  6. Liepmann, H.W.; Roshko, A. (1993) [1957], Elements of Gas Dynamics, Courier Dover Publications, ISBN   0-486-41963-0 , pp. 194–196.

Further reading