Beltrami vector field

Last updated

In vector calculus, a Beltrami vector field, named after Eugenio Beltrami, is a vector field in three dimensions that is parallel to its own curl. That is, F is a Beltrami vector field provided that

Contents

Thus and are parallel vectors in other words, .

If is solenoidal - that is, if such as for an incompressible fluid or a magnetic field, the identity becomes and this leads to

and if we further assume that is a constant, we arrive at the simple form

Beltrami vector fields with nonzero curl correspond to Euclidean contact forms in three dimensions.

The vector field

is a multiple of the standard contact structure −zi + j, and furnishes an example of a Beltrami vector field.

Beltrami fields and fluid mechanics

Beltrami fields with a constant proportionality factor are a distinct category of vector fields that act as eigenfunctions of the curl operator. In essence, they are functions that map points in a three-dimensional space, either in (Euclidean space) or on a flat torus , to other points in the same space. Mathematically, this can be represented as:

(for Euclidean space) or (for the flat torus).

These vector fields are unique due to the special relationship between the curl of the vector field and the field itself. This relationship can be expressed using the following equation:

In this equation, is a non-zero constant, which indicates that the curl of the vector field is proportional to the field itself.

Beltrami fields are relevant in fluid dynamics, as they offer a classical family of stationary solutions to the Euler equation in three dimensions. [1] The Euler equations describe the motion of an ideal, incompressible fluid and can be written as a system of two equations:

For stationary flows, where the velocity field does not change with time, i.e. , we can introduce the Bernoulli function, , and the vorticity, . These new variables simplify the Euler equations into the following system:

The simplification is possible due to a vector identity, which relates the convective term to the gradient of the kinetic energy and the cross product of the velocity field and its curl:

When the Bernoulli function is constant, Beltrami fields become valid solutions to the simplified Euler equations. Note that we do not need the proportionality factor to be constant for the proof to work.

Beltrami fields and complexity in fluid mechanics

Beltrami fields have a close connection to Lagrangian turbulence, as shown by V.I. Arnold's work on stationary Euler flows. [2] [3]

Arnold's "conjecture"

Arnold's quote from his aforementioned work highlights the probable complicated topology of the streamlines in Beltrami fields, drawing parallels with celestial mechanics:

Il est probable que les écoulements tels que rot , , ont des lignes de courant à la topologie compliquée. De telles complications interviennent en mécanique céleste. La topologie des lignes de courant des écoulements stationnaires des fluides visqueux peut être semblable à celle de mécanique céleste.

Proposed solutions

A recent paper [4] demonstrates that Beltrami fields exhibit chaotic regions and invariant tori of complex topologies with high probability. The analysis includes asymptotic bounds for the number of horseshoes, zeros, and knotted invariant tori, alongside periodic trajectories in Gaussian random Beltrami fields.

See also

Bibliography

Related Research Articles

<span class="mw-page-title-main">Curl (mathematics)</span> Circulation density in a vector field

In vector calculus, the curl, also known as rotor, is a vector operator that describes the infinitesimal circulation of a vector field in three-dimensional Euclidean space. The curl at a point in the field is represented by a vector whose length and direction denote the magnitude and axis of the maximum circulation. The curl of a field is formally defined as the circulation density at each point of the field.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

Del, or nabla, is an operator used in mathematics as a vector differential operator, usually represented by the nabla symbol . When applied to a function defined on a one-dimensional domain, it denotes the standard derivative of the function as defined in calculus. When applied to a field, it may denote any one of three operations depending on the way it is applied: the gradient or (locally) steepest slope of a scalar field ; the divergence of a vector field; or the curl (rotation) of a vector field.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

In fluid dynamics, Stokes' law is an empirical law for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.

<span class="mw-page-title-main">Euler equations (fluid dynamics)</span> Set of quasilinear hyperbolic equations governing adiabatic and inviscid flow

In fluid dynamics, the Euler equations are a set of quasilinear partial differential equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. In particular, they correspond to the Navier–Stokes equations with zero viscosity and zero thermal conductivity.

In vector calculus, a conservative vector field is a vector field that is the gradient of some function. A conservative vector field has the property that its line integral is path independent; the choice of path between two points does not change the value of the line integral. Path independence of the line integral is equivalent to the vector field under the line integral being conservative. A conservative vector field is also irrotational; in three dimensions, this means that it has vanishing curl. An irrotational vector field is necessarily conservative provided that the domain is simply connected.

<span class="mw-page-title-main">Scalar potential</span> When potential energy difference depends only on displacement

In mathematical physics, scalar potential, simply stated, describes the situation where the difference in the potential energies of an object in two different positions depends only on the positions, not upon the path taken by the object in traveling from one position to the other. It is a scalar field in three-space: a directionless value (scalar) that depends only on its location. A familiar example is potential energy due to gravity.

In mathematics, the method of characteristics is a technique for solving partial differential equations. Typically, it applies to first-order equations, although more generally the method of characteristics is valid for any hyperbolic partial differential equation. The method is to reduce a partial differential equation to a family of ordinary differential equations along which the solution can be integrated from some initial data given on a suitable hypersurface.

In physics and mathematics, in the area of vector calculus, Helmholtz's theorem, also known as the fundamental theorem of vector calculus, states that any sufficiently smooth, rapidly decaying vector field in three dimensions can be resolved into the sum of an irrotational (curl-free) vector field and a solenoidal (divergence-free) vector field; this is known as the Helmholtz decomposition or Helmholtz representation. It is named after Hermann von Helmholtz.

In differential geometry, the Laplace–Beltrami operator is a generalization of the Laplace operator to functions defined on submanifolds in Euclidean space and, even more generally, on Riemannian and pseudo-Riemannian manifolds. It is named after Pierre-Simon Laplace and Eugenio Beltrami.

<span class="mw-page-title-main">Maxwell stress tensor</span> Mathematical description in electromagnetism

The Maxwell stress tensor is a symmetric second-order tensor used in classical electromagnetism to represent the interaction between electromagnetic forces and mechanical momentum. In simple situations, such as a point charge moving freely in a homogeneous magnetic field, it is easy to calculate the forces on the charge from the Lorentz force law. When the situation becomes more complicated, this ordinary procedure can become impractically difficult, with equations spanning multiple lines. It is therefore convenient to collect many of these terms in the Maxwell stress tensor, and to use tensor arithmetic to find the answer to the problem at hand.

<span class="mw-page-title-main">Mathematical descriptions of the electromagnetic field</span> Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

The derivation of the Navier–Stokes equations as well as its application and formulation for different families of fluids, is an important exercise in fluid dynamics with applications in mechanical engineering, physics, chemistry, heat transfer, and electrical engineering. A proof explaining the properties and bounds of the equations, such as Navier–Stokes existence and smoothness, is one of the important unsolved problems in mathematics.

The Cauchy momentum equation is a vector partial differential equation put forth by Cauchy that describes the non-relativistic momentum transport in any continuum.

The derivatives of scalars, vectors, and second-order tensors with respect to second-order tensors are of considerable use in continuum mechanics. These derivatives are used in the theories of nonlinear elasticity and plasticity, particularly in the design of algorithms for numerical simulations.

In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.

<span class="mw-page-title-main">Stokes' theorem</span> Theorem in vector calculus

Stokes' theorem, also known as the Kelvin–Stokes theorem after Lord Kelvin and George Stokes, the fundamental theorem for curls or simply the curl theorem, is a theorem in vector calculus on . Given a vector field, the theorem relates the integral of the curl of the vector field over some surface, to the line integral of the vector field around the boundary of the surface. The classical theorem of Stokes can be stated in one sentence: The line integral of a vector field over a loop is equal to the surface integral of its curl over the enclosed surface. It is illustrated in the figure, where the direction of positive circulation of the bounding contour ∂Σ, and the direction n of positive flux through the surface Σ, are related by a right-hand-rule. For the right hand the fingers circulate along ∂Σ and the thumb is directed along n.

In fluid dynamics, Beltrami flows are flows in which the vorticity vector and the velocity vector are parallel to each other. In other words, Beltrami flow is a flow where Lamb vector is zero. It is named after the Italian mathematician Eugenio Beltrami due to his derivation of the Beltrami vector field, while initial developments in fluid dynamics were done by the Russian scientist Ippolit S. Gromeka in 1881.

Chandrasekhar–Kendall functions are the eigenfunctions of the curl operator derived by Subrahmanyan Chandrasekhar and P. C. Kendall in 1957 while attempting to solve the force-free magnetic fields. The functions were independently derived by both, and the two decided to publish their findings in the same paper.

References

  1. Topological Methods in Hydrodynamics. doi:10.1007/978-3-030-74278-2.
  2. Arnold, Vladimir (1966). "Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits". Annales de l'Institut Fourier. 16 (1): 319–361. doi: 10.5802/aif.233 . ISSN   1777-5310.
  3. Arnold, Vladimir I. (2014), Arnold, Vladimir I.; Givental, Alexander B.; Khesin, Boris A.; Varchenko, Alexander N. (eds.), "Sur la topologie des écoulements stationnaires des fluides parfaits", Vladimir I. Arnold - Collected Works: Hydrodynamics, Bifurcation Theory, and Algebraic Geometry 1965-1972, Berlin, Heidelberg: Springer, pp. 15–18, doi:10.1007/978-3-642-31031-7_3, ISBN   978-3-642-31031-7 , retrieved 2023-05-01
  4. Enciso, Alberto; Peralta-Salas, Daniel; Romaniega, Álvaro (2023). "Beltrami fields exhibit knots and chaos almost surely". Forum of Mathematics, Sigma. 11. arXiv: 2006.15033 . doi: 10.1017/fms.2023.52 . ISSN   2050-5094.