Exact differential

Last updated

In multivariate calculus, a differential or differential form is said to be exact or perfect (exact differential), as contrasted with an inexact differential, if it is equal to the general differential for some differentiable function   in an orthogonal coordinate system (hence is a multivariable function whose variables are independent, as they are always expected to be when treated in multivariable calculus).

Contents

An exact differential is sometimes also called a total differential, or a full differential, or, in the study of differential geometry, it is termed an exact form.

The integral of an exact differential over any integral path is path-independent, and this fact is used to identify state functions in thermodynamics.

Overview

Definition

Even if we work in three dimensions here, the definitions of exact differentials for other dimensions are structurally similar to the three dimensional definition. In three dimensions, a form of the type

is called a differential form. This form is called exact on an open domain in space if there exists some differentiable scalar function defined on such that

 

throughout , where are orthogonal coordinates (e.g., Cartesian, cylindrical, or spherical coordinates). In other words, in some open domain of a space, a differential form is an exact differential if it is equal to the general differential of a differentiable function in an orthogonal coordinate system.

Note: In this mathematical expression, the subscripts outside the parenthesis indicate which variables are being held constant during differentiation. Due to the definition of the partial derivative, these subscripts are not required, but they are explicitly shown here as reminders.

Integral path independence

The exact differential for a differentiable scalar function defined in an open domain is equal to , where is the gradient of , represents the scalar product, and is the general differential displacement vector, if an orthogonal coordinate system is used. If is of differentiability class (continuously differentiable), then is a conservative vector field for the corresponding potential by the definition. For three dimensional spaces, expressions such as and can be made.

The gradient theorem states

that does not depend on which integral path between the given path endpoints and is chosen. So it is concluded that the integral of an exact differential is independent of the choice of an integral path between given path endpoints (path independence).

For three dimensional spaces, if defined on an open domain is of differentiability class (equivalently is of ), then this integral path independence can also be proved by using the vector calculus identity and the Stokes' theorem.

for a simply closed loop with the smooth oriented surface in it. If the open domain is simply connected open space (roughly speaking, a single piece open space without a hole within it), then any irrotational vector field (defined as a vector field which curl is zero, i.e., ) has the path independence by the Stokes' theorem, so the following statement is made; In a simply connected open region, anyvector field that has the path-independence property (so it is a conservative vector field.) must also be irrotational and vice versa. The equality of the path independence and conservative vector fields is shown here.

Thermodynamic state function

In thermodynamics, when is exact, the function is a state function of the system: a mathematical function which depends solely on the current equilibrium state, not on the path taken to reach that state. Internal energy , Entropy , Enthalpy , Helmholtz free energy , and Gibbs free energy are state functions. Generally, neither work nor heat is a state function. (Note: is commonly used to represent heat in physics. It should not be confused with the use earlier in this article as the parameter of an exact differential.)

One dimension

In one dimension, a differential form

is exact if and only if has an antiderivative (but not necessarily one in terms of elementary functions). If has an antiderivative and let be an antiderivative of so , then obviously satisfies the condition for exactness. If does not have an antiderivative, then we cannot write with for a differentiable function so is inexact.

Two and three dimensions

By symmetry of second derivatives, for any "well-behaved" (non-pathological) function , we have

Hence, in a simply-connected region R of the xy-plane, where are independent, [1] a differential form

is an exact differential if and only if the equation

holds. If it is an exact differential so and , then is a differentiable (smoothly continuous) function along and , so . If holds, then and are differentiable (again, smoothly continuous) functions along and respectively, and is only the case.

For three dimensions, in a simply-connected region R of the xyz-coordinate system, by a similar reason, a differential

is an exact differential if and only if between the functions A, B and C there exist the relations

; ; 

These conditions are equivalent to the following sentence: If G is the graph of this vector valued function then for all tangent vectors X,Y of the surfaceG then s(X, Y) = 0 with s the symplectic form.

These conditions, which are easy to generalize, arise from the independence of the order of differentiations in the calculation of the second derivatives. So, in order for a differential dQ, that is a function of four variables, to be an exact differential, there are six conditions (the combination ) to satisfy.

Partial differential relations

If a differentiable function is one-to-one (injective) for each independent variable, e.g., is one-to-one for at a fixed while it is not necessarily one-to-one for , then the following total differentials exist because each independent variable is a differentiable function for the other variables, e.g., .

Substituting the first equation into the second and rearranging, we obtain

Since and are independent variables, and may be chosen without restriction. For this last equation to generally hold, the bracketed terms must be equal to zero. [2] The left bracket equal to zero leads to the reciprocity relation while the right bracket equal to zero goes to the cyclic relation as shown below.

Reciprocity relation

Setting the first term in brackets equal to zero yields

A slight rearrangement gives a reciprocity relation,

There are two more permutations of the foregoing derivation that give a total of three reciprocity relations between , and .

Cyclic relation

The cyclic relation is also known as the cyclic rule or the Triple product rule. Setting the second term in brackets equal to zero yields

Using a reciprocity relation for on this equation and reordering gives a cyclic relation (the triple product rule),

If, instead, reciprocity relations for and are used with subsequent rearrangement, a standard form for implicit differentiation is obtained:

Some useful equations derived from exact differentials in two dimensions

(See also Bridgman's thermodynamic equations for the use of exact differentials in the theory of thermodynamic equations)

Suppose we have five state functions , and . Suppose that the state space is two-dimensional and any of the five quantities are differentiable. Then by the chain rule

but also by the chain rule:

and

so that (by substituting (2) and (3) into (1)):

which implies that (by comparing (4) with (1)):

Letting in (5) gives:

Letting in (5) gives:

Letting and in (7) gives:

using ( gives the triple product rule:

See also

Related Research Articles

In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g. More precisely, if is the function such that for every x, then the chain rule is, in Lagrange's notation,

<span class="mw-page-title-main">Curl (mathematics)</span> Circulation density in a vector field

In vector calculus, the curl, also known as rotor, is a vector operator that describes the infinitesimal circulation of a vector field in three-dimensional Euclidean space. The curl at a point in the field is represented by a vector whose length and direction denote the magnitude and axis of the maximum circulation. The curl of a field is formally defined as the circulation density at each point of the field.

<span class="mw-page-title-main">Divergence</span> Vector operator in vector calculus

In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.

<span class="mw-page-title-main">Lorentz force</span> Force acting on charged particles in electric and magnetic fields

In physics, specifically in electromagnetism, the Lorentz force is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge q moving with a velocity v in an electric field E and a magnetic field B experiences a force of

In vector calculus and differential geometry the generalized Stokes theorem, also called the Stokes–Cartan theorem, is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus. In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or and the divergence theorem is the case of a volume in Hence, the theorem is sometimes referred to as the Fundamental Theorem of Multivariate Calculus.

<span class="mw-page-title-main">Laplace's equation</span> Second-order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as

<span class="mw-page-title-main">Cauchy's integral formula</span> Provides integral formulas for all derivatives of a holomorphic function

In mathematics, Cauchy's integral formula, named after Augustin-Louis Cauchy, is a central statement in complex analysis. It expresses the fact that a holomorphic function defined on a disk is completely determined by its values on the boundary of the disk, and it provides integral formulas for all derivatives of a holomorphic function. Cauchy's formula shows that, in complex analysis, "differentiation is equivalent to integration": complex differentiation, like integration, behaves well under uniform limits – a result that does not hold in real analysis.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

<span class="mw-page-title-main">Stream function</span> Function for incompressible divergence-free flows in two dimensions

In fluid dynamics, two types of stream function are defined:

In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D bounded by C. It is the two-dimensional special case of Stokes' theorem.

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component and the intrinsic covariant derivative component.

In vector calculus, a conservative vector field is a vector field that is the gradient of some function. A conservative vector field has the property that its line integral is path independent; the choice of path between two points does not change the value of the line integral. Path independence of the line integral is equivalent to the vector field under the line integral being conservative. A conservative vector field is also irrotational; in three dimensions, this means that it has vanishing curl. An irrotational vector field is necessarily conservative provided that the domain is simply connected.

In mathematics, the method of characteristics is a technique for solving partial differential equations. Typically, it applies to first-order equations, although more generally the method of characteristics is valid for any hyperbolic and parabolic partial differential equation. The method is to reduce a partial differential equation to a family of ordinary differential equations along which the solution can be integrated from some initial data given on a suitable hypersurface.

This is a list of some vector calculus formulae for working with common curvilinear coordinate systems.

In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices. It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities. This greatly simplifies operations such as finding the maximum or minimum of a multivariate function and solving systems of differential equations. The notation used here is commonly used in statistics and engineering, while the tensor index notation is preferred in physics.

In differential calculus, there is no single uniform notation for differentiation. Instead, various notations for the derivative of a function or variable have been proposed by various mathematicians. The usefulness of each notation varies with the context, and it is sometimes advantageous to use more than one notation in a given context. The most common notations for differentiation are listed below.

The Cauchy momentum equation is a vector partial differential equation put forth by Cauchy that describes the non-relativistic momentum transport in any continuum.

In mathematics, a line integral is an integral where the function to be integrated is evaluated along a curve. The terms path integral, curve integral, and curvilinear integral are also used; contour integral is used as well, although that is typically reserved for line integrals in the complex plane.

In mathematics, calculus on Euclidean space is a generalization of calculus of functions in one or several variables to calculus of functions on Euclidean space as well as a finite-dimensional real vector space. This calculus is also known as advanced calculus, especially in the United States. It is similar to multivariable calculus but is somewhat more sophisticated in that it uses linear algebra more extensively and covers some concepts from differential geometry such as differential forms and Stokes' formula in terms of differential forms. This extensive use of linear algebra also allows a natural generalization of multivariable calculus to calculus on Banach spaces or topological vector spaces.

References

  1. If the pair of independent variables is a (locally reversible) function of dependent variables , all that is needed for the following theorem to hold, is to replace the partial derivatives with respect to or to , by the partial derivatives with respect to and to involving their Jacobian components. That is: is an exact differential, if and only if:
  2. Çengel, Yunus A.; Boles, Michael A.; Kanoğlu, Mehmet (2019) [1989]. "Thermodynamics Property Relations". Thermodynamics - An Engineering Approach (9th ed.). New York: McGraw-Hill Education. pp. 647–648. ISBN   978-1-259-82267-4.