Triple product rule

Last updated

The triple product rule, known variously as the cyclic chain rule, cyclic relation, cyclical rule or Euler's chain rule, is a formula which relates partial derivatives of three interdependent variables. The rule finds application in thermodynamics, where frequently three variables can be related by a function of the form f(x, y, z) = 0, so each variable is given as an implicit function of the other two variables. For example, an equation of state for a fluid relates temperature, pressure, and volume in this manner. The triple product rule for such interrelated variables x, y, and z comes from using a reciprocity relation on the result of the implicit function theorem, and is given by

Contents

where each factor is a partial derivative of the variable in the numerator, considered to be a function of the other two.

The advantage of the triple product rule is that by rearranging terms, one can derive a number of substitution identities which allow one to replace partial derivatives which are difficult to analytically evaluate, experimentally measure, or integrate with quotients of partial derivatives which are easier to work with. For example,

Various other forms of the rule are present in the literature; these can be derived by permuting the variables {x, y, z}.

Derivation

An informal derivation follows. Suppose that f(x, y, z) = 0. Write z as a function of x and y. Thus the total differential dz is

Suppose that we move along a curve with dz = 0, where the curve is parameterized by x. Thus y can be written in terms of x, so on this curve

Therefore, the equation for dz = 0 becomes

Since this must be true for all dx, rearranging terms gives

Dividing by the derivatives on the right hand side gives the triple product rule

Note that this proof makes many implicit assumptions regarding the existence of partial derivatives, the existence of the exact differential dz, the ability to construct a curve in some neighborhood with dz = 0, and the nonzero value of partial derivatives and their reciprocals. A formal proof based on mathematical analysis would eliminate these potential ambiguities.

Alternative derivation

Suppose a function f(x, y, z) = 0, where x, y, and z are functions of each other. Write the total differentials of the variables

Substitute dy into dx

By using the chain rule one can show the coefficient of dx on the right hand side is equal to one, thus the coefficient of dz must be zero

Subtracting the second term and multiplying by its inverse gives the triple product rule

Applications

Example: Ideal Gas Law

The ideal gas law relates the state variables of pressure (P), volume (V), and temperature (T) via

which can be written as

so each state variable can be written as an implicit function of the other state variables:

From the above expressions, we have

Geometric Realization

The profile of a traveling wave at time t (solid line) and t+Dt (dashed line). In the time interval Dt, the point p2 will rise up to the same height that p1 had at time t. Deriving Wave Velocity using the Triple Product Rule.png
The profile of a traveling wave at time t (solid line) and tt (dashed line). In the time interval Δt, the point p2 will rise up to the same height that p1 had at time t.

A geometric realization of the triple product rule can be found in its close ties to the velocity of a traveling wave

shown on the right at time t (solid blue line) and at a short time later tt (dashed). The wave maintains its shape as it propagates, so that a point at position x at time t will correspond to a point at position xx at time tt,

This equation can only be satisfied for all x and t if kΔxωΔt = 0, resulting in the formula for the phase velocity

To elucidate the connection with the triple product rule, consider the point p1 at time t and its corresponding point (with the same height) 1 at tt. Define p2 as the point at time t whose x-coordinate matches that of 1, and define 2 to be the corresponding point of p2 as shown in the figure on the right. The distance Δx between p1 and 1 is the same as the distance between p2 and 2 (green lines), and dividing this distance by Δt yields the speed of the wave.

To compute Δx, consider the two partial derivatives computed at p2,

Dividing these two partial derivatives and using the definition of the slope (rise divided by run) gives us the desired formula for

where the negative sign accounts for the fact that p1 lies behind p2 relative to the wave's motion. Thus, the wave's velocity is given by

For infinitesimal Δt, and we recover the triple product rule

See also

Related Research Articles

In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g. More precisely, if is the function such that for every x, then the chain rule is, in Lagrange's notation,

<span class="mw-page-title-main">Cauchy–Riemann equations</span> Conditions required of holomorphic (complex differentiable) functions

In the field of complex analysis in mathematics, the Cauchy–Riemann equations, named after Augustin Cauchy and Bernhard Riemann, consist of a system of two partial differential equations which, together with certain continuity and differentiability criteria, form a necessary and sufficient condition for a complex function to be holomorphic. This system of equations first appeared in the work of Jean le Rond d'Alembert. Later, Leonhard Euler connected this system to the analytic functions. Cauchy then used these equations to construct his theory of functions. Riemann's dissertation on the theory of functions appeared in 1851.

<span class="mw-page-title-main">Feynman diagram</span> Pictorial representation of the behavior of subatomic particles

In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduced the diagrams in 1948. The interaction of subatomic particles can be complex and difficult to understand; Feynman diagrams give a simple visualization of what would otherwise be an arcane and abstract formula. According to David Kaiser, "Since the middle of the 20th century, theoretical physicists have increasingly turned to this tool to help them undertake critical calculations. Feynman diagrams have revolutionized nearly every aspect of theoretical physics." While the diagrams are applied primarily to quantum field theory, they can also be used in other fields, such as solid-state theory. Frank Wilczek wrote that the calculations that won him the 2004 Nobel Prize in Physics "would have been literally unthinkable without Feynman diagrams, as would [Wilczek's] calculations that established a route to production and observation of the Higgs particle."

<span class="mw-page-title-main">Heat equation</span> Partial differential equation describing the evolution of temperature in a region

In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region.

The calculus of variations is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions to the real numbers. Functionals are often expressed as definite integrals involving functions and their derivatives. Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations.

In the calculus of variations, a field of mathematical analysis, the functional derivative relates a change in a functional to a change in a function on which the functional depends.

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

In mathematics, the symmetry of second derivatives refers to the possibility of interchanging the order of taking partial derivatives of a function

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics. The Hamilton–Jacobi equation is particularly useful in identifying conserved quantities for mechanical systems, which may be possible even when the mechanical problem itself cannot be solved completely.

<span class="mw-page-title-main">Electromagnetic tensor</span> Mathematical object that describes the electromagnetic field in spacetime

In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written very concisely, and allows for the quantization of the electromagnetic field by Lagrangian formulation described below.

In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Leibniz, states that for an integral of the form

The following are important identities involving derivatives and integrals in vector calculus.

In theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation.

In differential calculus, there is no single uniform notation for differentiation. Instead, various notations for the derivative of a function or variable have been proposed by various mathematicians. The usefulness of each notation varies with the context, and it is sometimes advantageous to use more than one notation in a given context. The most common notations for differentiation are listed below.

The Cauchy momentum equation is a vector partial differential equation put forth by Cauchy that describes the non-relativistic momentum transport in any continuum.

In fluid dynamics, Luke's variational principle is a Lagrangian variational description of the motion of surface waves on a fluid with a free surface, under the action of gravity. This principle is named after J.C. Luke, who published it in 1967. This variational principle is for incompressible and inviscid potential flows, and is used to derive approximate wave models like the mild-slope equation, or using the averaged Lagrangian approach for wave propagation in inhomogeneous media.

In calculus, the differential represents the principal part of the change in a function with respect to changes in the independent variable. The differential is defined by

In mathematical analysis and its applications, a function of several real variables or real multivariate function is a function with more than one argument, with all arguments being real variables. This concept extends the idea of a function of a real variable to several variables. The "input" variables take real values, while the "output", also called the "value of the function", may be real or complex. However, the study of the complex-valued functions may be easily reduced to the study of the real-valued functions, by considering the real and imaginary parts of the complex function; therefore, unless explicitly specified, only real-valued functions will be considered in this article.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

In mathematics, calculus on Euclidean space is a generalization of calculus of functions in one or several variables to calculus of functions on Euclidean space as well as a finite-dimensional real vector space. This calculus is also known as advanced calculus, especially in the United States. It is similar to multivariable calculus but is somehow more sophisticated in that it uses linear algebra more extensively and covers some concepts from differential geometry such as differential forms and Stokes' formula in terms of differential forms. This extensive use of linear algebra also allows a natural generalization of multivariable calculus to calculus on Banach spaces or topological vector spaces.

References