This article needs additional citations for verification .(September 2014) |
In geometry, a hypercone (or spherical cone) is the figure in the 4-dimensional Euclidean space represented by the equation
It is a quadric surface, and is one of the possible 3-manifolds which are 4-dimensional equivalents of the conical surface in 3 dimensions. It is also named "spherical cone" because its intersections with hyperplanes perpendicular to the w-axis are spheres. A four-dimensional right hypercone can be thought of as a sphere which expands with time, starting its expansion from a single point source, such that the center of the expanding sphere remains fixed. An oblique hypercone would be a sphere which expands with time, again starting its expansion from a point source, but such that the center of the expanding sphere moves with a uniform velocity.
A right spherical hypercone can be described by the function
with vertex at the origin and expansion speed s.
A right spherical hypercone with radius r and height h can be described by the function
An oblique spherical hypercone could then be described by the function
where is the 3-velocity of the center of the expanding sphere. An example of such a cone would be an expanding sound wave as seen from the point of view of a moving reference frame: e.g. the sound wave of a jet aircraft as seen from the jet's own reference frame.
Note that the 3D-surfaces above enclose 4D-hypervolumes, which are the 4-cones proper.
The spherical cone consists of two unbounded nappes, which meet at the origin and are the analogues of the nappes of the 3-dimensional conical surface. The upper nappe corresponds with the half with positive w-coordinates, and the lower nappe corresponds with the half with negative w-coordinates.
If it is restricted between the hyperplanes w = 0 and w = r for some nonzero r, then it may be closed by a 3-ball of radius r, centered at (0,0,0,r), so that it bounds a finite 4-dimensional volume. This volume is given by the formula 1/3πr4, and is the 4-dimensional equivalent of the solid cone. The ball may be thought of as the 'lid' at the base of the 4-dimensional cone's nappe, and the origin becomes its 'apex'.
This shape may be projected into 3-dimensional space in various ways. If projected onto the xyz hyperplane, its image is a ball. If projected onto the xyw, xzw, or yzw hyperplanes, its image is a solid cone. If projected onto an oblique hyperplane, its image is either an ellipsoid or a solid cone with an ellipsoidal base (resembling an ice cream cone). These images are the analogues of the possible images of the solid cone projected to 2 dimensions.
The (half) hypercone may be constructed in a manner analogous to the construction of a 3D cone. A 3D cone may be thought of as the result of stacking progressively smaller discs on top of each other until they taper to a point. Alternatively, a 3D cone may be regarded as the volume swept out by an upright isosceles triangle as it rotates about its base.
A 4D hypercone may be constructed analogously: by stacking progressively smaller balls on top of each other in the 4th direction until they taper to a point, or taking the hypervolume swept out by a tetrahedron standing upright in the 4th direction as it rotates freely about its base in the 3D hyperplane on which it rests.
The hypervolume of a four-dimensional pyramid and cone is
where V is the volume of the base and h is the height (the distance between the centre of the base and the apex). For a spherical cone with a base volume of , the hypervolume is
The lateral surface volume of a right spherical cone is where is the radius of the spherical base and is the slant height of the cone (the distance between the 2D surface of the sphere and the apex). The surface volume of the spherical base is the same as for any sphere, . Therefore, the total surface volume of a right spherical cone can be expressed in the following ways:
(the volume of the base plus the volume of the lateral 3D surface; the term is the slant height)
where is the radius and is the height.
where is the radius and is the slant height.
where is the base surface area, is the radius, and is the slant height.
If the w-coordinate of the equation of the spherical cone is interpreted as the distance ct, where t is coordinate time and c is the speed of light (a constant), then it is the shape of the light cone in special relativity. In this case, the equation is usually written as:
which is also the equation for spherical wave fronts of light. [1] The upper nappe is then the future light cone and the lower nappe is the past light cone. [2]
In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a given point in space is specified by three real numbers: the radial distancer along the radial line connecting the point to the fixed point of origin; the polar angleθ between the radial line and a polar axis; and the azimuthal angleφ as the angle of rotation of the radial line around the polar axis. (See graphic re the "physics convention".) Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates.
In mathematics, an n-sphere or hypersphere is an -dimensional generalization of the -dimensional circle and -dimensional sphere to any non-negative integer . The -sphere is the setting for -dimensional spherical geometry.
In mathematics, a 3-sphere, glome or hypersphere is a higher-dimensional analogue of a sphere. In 4-dimensional Euclidean space, it is the set of points equidistant from a fixed central point. Analogous to how the boundary of a ball in three dimensions is an ordinary sphere, the boundary of a ball in four dimensions is a 3-sphere. Topologically, a 3-sphere is an example of a 3-manifold, and it is also an n-sphere.
In geometry, a solid angle is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The point from which the object is viewed is called the apex of the solid angle, and the object is said to subtend its solid angle at that point.
An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.
In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.
In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. The table of spherical harmonics contains a list of common spherical harmonics.
In probability theory, the Borel–Kolmogorov paradox is a paradox relating to conditional probability with respect to an event of probability zero. It is named after Émile Borel and Andrey Kolmogorov.
A cone is a three-dimensional geometric shape that tapers smoothly from a flat base to a point called the apex or vertex.
In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane. It is also a spherical segment of one base, i.e., bounded by a single plane. If the plane passes through the center of the sphere, so that the height of the cap is equal to the radius of the sphere, the spherical cap is called a hemisphere.
{{Pi bo
In classical mechanics, the shell theorem gives gravitational simplifications that can be applied to objects inside or outside a spherically symmetrical body. This theorem has particular application to astronomy.
In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z).
The method of image charges is a basic problem-solving tool in electrostatics. The name originates from the replacement of certain elements in the original layout with fictitious charges, which replicates the boundary conditions of the problem.
In physics, spherical multipole moments are the coefficients in a series expansion of a potential that varies inversely with the distance R to a source, i.e., as Examples of such potentials are the electric potential, the magnetic potential and the gravitational potential.
In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors.
In geometry, a spherical sector, also known as a spherical cone, is a portion of a sphere or of a ball defined by a conical boundary with apex at the center of the sphere. It can be described as the union of a spherical cap and the cone formed by the center of the sphere and the base of the cap. It is the three-dimensional analogue of the sector of a circle.
In the theory of Lorentzian manifolds, spherically symmetric spacetimes admit a family of nested round spheres. In such a spacetime, a particularly important kind of coordinate chart is the Schwarzschild chart, a kind of polar spherical coordinate chart on a static and spherically symmetric spacetime, which is adapted to these nested round spheres. The defining characteristic of Schwarzschild chart is that the radial coordinate possesses a natural geometric interpretation in terms of the surface area and Gaussian curvature of each sphere. However, radial distances and angles are not accurately represented.
In four-dimensional geometry, the spherinder, or spherical cylinder or spherical prism, is a geometric object, defined as the Cartesian product of a 3-ball of radius r1 and a line segment of length 2r2:
In Einstein's theory of general relativity, the interior Schwarzschild metric is an exact solution for the gravitational field in the interior of a non-rotating spherical body which consists of an incompressible fluid and has zero pressure at the surface. This is a static solution, meaning that it does not change over time. It was discovered by Karl Schwarzschild in 1916, who earlier had found the exterior Schwarzschild metric.