In the analysis of algorithms, several authors have studied the computation of the volume of high-dimensional convex bodies, a problem that can also be used to model many other problems in combinatorial enumeration. Often these works use a black box model of computation in which the input is given by a subroutine for testing whether a point is inside or outside of the convex body, rather than by an explicit listing of the vertices or faces of a convex polytope. It is known that, in this model, no deterministic algorithm can achieve an accurate approximation, [1] [2] and even for an explicit listing of faces or vertices the problem is #P-hard. [3] However, a joint work by Martin Dyer, Alan M. Frieze and Ravindran Kannan provided a randomized polynomial time approximation scheme for the problem, providing a sharp contrast between the capabilities of randomized and deterministic algorithms. [4]
The main result of the paper is a randomized algorithm for finding an approximation to the volume of a convex body in -dimensional Euclidean space by assuming the existence of a membership oracle. The algorithm takes time bounded by a polynomial in , the dimension of and . The algorithm combines two ideas:
The given convex body can be approximated by a sequence of nested bodies, eventually reaching one of known volume (a hypersphere), with this approach used to estimate the factor by which the volume changes at each step of this sequence. Multiplying these factors gives the approximate volume of the original body.
This work earned its authors the 1991 Fulkerson Prize. [5]
Although the time for this algorithm is polynomial, it has a high exponent. Subsequent authors improved the running time of this method by providing more quickly mixing Markov chains for the same problem. [6] [7] [8] [9]
The polynomial-time approximability result has been generalized to more complex structures such as the union and intersection of objects. [10] This relates to Klee's measure problem.
Geometry of numbers is the part of number theory which uses geometry for the study of algebraic numbers. Typically, a ring of algebraic integers is viewed as a lattice in and the study of these lattices provides fundamental information on algebraic numbers. The geometry of numbers was initiated by Hermann Minkowski (1910).
In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to differ by at most a constant factor.
A randomized algorithm is an algorithm that employs a degree of randomness as part of its logic. The algorithm typically uses uniformly random bits as an auxiliary input to guide its behavior, in the hope of achieving good performance in the "average case" over all possible choices of random determined by the random bits; thus either the running time, or the output are random variables.
In graph theory, an independent set, stable set, coclique or anticlique is a set of vertices in a graph, no two of which are adjacent. That is, it is a set of vertices such that for every two vertices in , there is no edge connecting the two. Equivalently, each edge in the graph has at most one endpoint in . A set is independent if and only if it is a clique in the graph’s complement. The size of an independent set is the number of vertices it contains. Independent sets have also been called "internally stable sets", of which "stable set" is a shortening.
In computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems with provable guarantees on the distance of the returned solution to the optimal one. Approximation algorithms naturally arise in the field of theoretical computer science as a consequence of the widely believed P ≠ NP conjecture. Under this conjecture, a wide class of optimization problems cannot be solved exactly in polynomial time. The field of approximation algorithms, therefore, tries to understand how closely it is possible to approximate optimal solutions to such problems in polynomial time. In an overwhelming majority of the cases, the guarantee of such algorithms is a multiplicative one expressed as an approximation ratio or approximation factor i.e., the optimal solution is always guaranteed to be within a (predetermined) multiplicative factor of the returned solution. However, there are also many approximation algorithms that provide an additive guarantee on the quality of the returned solution. A notable example of an approximation algorithm that provides both is the classic approximation algorithm of Lenstra, Shmoys and Tardos for scheduling on unrelated parallel machines.
In the mathematical discipline of graph theory, a matching or independent edge set in an undirected graph is a set of edges without common vertices. Finding a matching in a bipartite graph can be treated as a network flow problem.
The Fulkerson Prize for outstanding papers in the area of discrete mathematics is sponsored jointly by the Mathematical Optimization Society (MOS) and the American Mathematical Society (AMS). Up to three awards of $1,500 each are presented at each (triennial) International Symposium of the MOS. Originally, the prizes were paid out of a memorial fund administered by the AMS that was established by friends of the late Delbert Ray Fulkerson to encourage mathematical excellence in the fields of research exemplified by his work. The prizes are now funded by an endowment administered by MPS.
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the -dimensional Euclidean space . Most texts use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue. Yet other texts identify a convex polytope with its boundary.
The graph isomorphism problem is the computational problem of determining whether two finite graphs are isomorphic.
Ravindran Kannan is a Principal Researcher at Microsoft Research India, where he leads the algorithms research group. He is also the first adjunct faculty of Computer Science and Automation Department of Indian Institute of Science.
In mathematics, the relaxation of a (mixed) integer linear program is the problem that arises by removing the integrality constraint of each variable.
The Birkhoff polytopeBn is the convex polytope in RN whose points are the doubly stochastic matrices, i.e., the n × n matrices whose entries are non-negative real numbers and whose rows and columns each add up to 1. It is named after Garrett Birkhoff.
In computer science, lattice problems are a class of optimization problems related to mathematical objects called lattices. The conjectured intractability of such problems is central to the construction of secure lattice-based cryptosystems: Lattice problems are an example of NP-hard problems which have been shown to be average-case hard, providing a test case for the security of cryptographic algorithms. In addition, some lattice problems which are worst-case hard can be used as a basis for extremely secure cryptographic schemes. The use of worst-case hardness in such schemes makes them among the very few schemes that are very likely secure even against quantum computers. For applications in such cryptosystems, lattices over vector space or free modules are generally considered.
Mark Richard Jerrum is a British computer scientist and computational theorist.
Kenneth Lee Clarkson is an American computer scientist known for his research in computational geometry. He is a researcher at the IBM Almaden Research Center, and co-editor-in-chief of the Journal of Computational Geometry.
In computational geometry and computer science, the minimum-weight triangulation problem is the problem of finding a triangulation of minimal total edge length. That is, an input polygon or the convex hull of an input point set must be subdivided into triangles that meet edge-to-edge and vertex-to-vertex, in such a way as to minimize the sum of the perimeters of the triangles. The problem is NP-hard for point set inputs, but may be approximated to any desired degree of accuracy. For polygon inputs, it may be solved exactly in polynomial time. The minimum weight triangulation has also sometimes been called the optimal triangulation.
Alan M. Frieze is a professor in the Department of Mathematical Sciences at Carnegie Mellon University, Pittsburgh, United States. He graduated from the University of Oxford in 1966, and obtained his PhD from the University of London in 1975. His research interests lie in combinatorics, discrete optimisation and theoretical computer science. Currently, he focuses on the probabilistic aspects of these areas; in particular, the study of the asymptotic properties of random graphs, the average case analysis of algorithms, and randomised algorithms. His recent work has included approximate counting and volume computation via random walks; finding edge disjoint paths in expander graphs, and exploring anti-Ramsey theory and the stability of routing algorithms.
Martin Edward Dyer is a professor in the School of Computing at the University of Leeds, Leeds, England. He graduated from the University of Leeds in 1967, obtained his MSc from Imperial College London in 1968 and his PhD from the University of Leeds in 1979. His research interests lie in theoretical computer science, discrete optimization and combinatorics. Currently, he focuses on the complexity of counting and the efficiency of Markov chain algorithms for approximate counting.
The geometric set cover problem is the special case of the set cover problem in geometric settings. The input is a range space where is a universe of points in and is a family of subsets of called ranges, defined by the intersection of and geometric shapes such as disks and axis-parallel rectangles. The goal is to select a minimum-size subset of ranges such that every point in the universe is covered by some range in .
In graph theory and computational complexity theory, a Frankl–Rödl graph is a graph defined by connecting pairs of vertices of a hypercube that are at a specified even distance from each other. The graphs of this type are parameterized by the dimension of the hypercube and by the distance between adjacent vertices.