Compound of two snub dodecahedra

Last updated • a couple of secsFrom Wikipedia, The Free Encyclopedia
Compound of two snub dodecahedra
UC69-2 snub dodecahedra.png
Type Uniform compound
IndexUC69
Schläfli symbol βr{5,3}
Coxeter diagram CDel node h3.pngCDel 5.pngCDel node h3.pngCDel 3.pngCDel node h3.png
Polyhedra2 snub dodecahedra
Faces40+120 triangles, 24 pentagons
Edges300
Vertices120
Symmetry group icosahedral (Ih)
Subgroup restricting to one constituent chiral icosahedral (I)

This uniform polyhedron compound is a composition of the 2 enantiomers of the snub dodecahedron.

The vertex arrangement of this compound is shared by a convex nonuniform truncated icosidodecahedron, with rectangular faces, alongside irregular hexagons and decagons, each alternating two different edge lengths.

Together with its convex hull, it represents the snub dodecahedron-first projection of the nonuniform snub dodecahedral antiprism.

Related Research Articles

Archimedean solid Polyhedra in which all vertices are the same

In geometry, an Archimedean solid is one of the 13 solids first enumerated by Archimedes. They are the convex uniform polyhedra composed of regular polygons meeting in identical vertices, excluding the five Platonic solids, excluding the prisms and antiprisms, and excluding the pseudorhombicuboctahedron. They are a subset of the Johnson solids, whose regular polygonal faces do not need to meet in identical vertices.

In geometry, a dodecahedron or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120.

Regular icosahedron One of the five Platonic solids

In geometry, a regular icosahedron is a convex polyhedron with 20 faces, 30 edges and 12 vertices. It is one of the five Platonic solids, and the one with the most faces.

A polyhedral compound is a figure that is composed of several polyhedra sharing a common centre. They are the three-dimensional analogs of polygonal compounds such as the hexagram.

Truncated cuboctahedron Archimedean solid in geometry

In geometry, the truncated cuboctahedron is an Archimedean solid, named by Kepler as a truncation of a cuboctahedron. It has 12 square faces, 8 regular hexagonal faces, 6 regular octagonal faces, 48 vertices, and 72 edges. Since each of its faces has point symmetry, the truncated cuboctahedron is a 9-zonohedron. The truncated cuboctahedron can tessellate with the octagonal prism.

Truncated icosidodecahedron

In geometry, the truncated icosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed by two or more types of regular polygon faces.

Snub dodecahedron

In geometry, the snub dodecahedron, or snub icosidodecahedron, is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed by two or more types of regular polygon faces.

Great dodecahedron

In geometry, the great dodecahedron is a Kepler–Poinsot polyhedron, with Schläfli symbol {5,5/2} and Coxeter–Dynkin diagram of . It is one of four nonconvex regular polyhedra. It is composed of 12 pentagonal faces, intersecting each other making a pentagrammic path, with five pentagons meeting at each vertex.

Small stellated dodecahedron A Kepler-Poinsot polyhedron

In geometry, the small stellated dodecahedron is a Kepler-Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol {52,5}. It is one of four nonconvex regular polyhedra. It is composed of 12 pentagrammic faces, with five pentagrams meeting at each vertex.

Cubic honeycomb Only regular space-filling tessellation of the cube

The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}. John Horton Conway called this honeycomb a cubille.

Small snub icosicosidodecahedron Geometric figure

In geometry, the small snub icosicosidodecahedron or snub disicosidodecahedron is a uniform star polyhedron, indexed as U32. It has 112 faces (100 triangles and 12 pentagrams), 180 edges, and 60 vertices. Its stellation core is a truncated pentakis dodecahedron. It also called a holosnub icosahedron, ß{3,5}.

Small retrosnub icosicosidodecahedron

In geometry, the small retrosnub icosicosidodecahedron (also known as a retrosnub disicosidodecahedron, small inverted retrosnub icosicosidodecahedron, or retroholosnub icosahedron) is a nonconvex uniform polyhedron, indexed as U72. It has 112 faces (100 triangles and 12 pentagrams), 180 edges, and 60 vertices. It is given a Schläfli symbol ß{32,5}.

Runcinated 120-cells

In four-dimensional geometry, a runcinated 120-cell is a convex uniform 4-polytope, being a runcination of the regular 120-cell.

Compound of two icosahedra Polyhedral compound

This uniform polyhedron compound is a composition of 2 icosahedra. It has octahedral symmetry Oh. As a holosnub, it is represented by Schläfli symbol β{3,4} and Coxeter diagram .

Compound of two snub cubes Polyhedral compound

This uniform polyhedron compound is a composition of the 2 enantiomers of the snub cube. As a holosnub, it is represented by Schläfli symbol βr{4,3} and Coxeter diagram .

Compound of five truncated tetrahedra Polyhedral compound

The compound of five truncated tetrahedra is a uniform polyhedron compound. It's composed of 5 truncated tetrahedra rotated around a common axis. It may be formed by truncating each of the tetrahedra in the compound of five tetrahedra. A far-enough truncation creates the compound of five octahedra. Its convex hull is a nonuniform snub dodecahedron.

Snub cubic prism

In geometry, a snub cubic prism or snub cuboctahedral prism is a convex uniform polychoron.

Snub dodecahedral prism

In geometry, a snub dodecahedral prism or snub icosidodecahedral prism is a convex uniform polychoron.

References