List of k-uniform tilings

Last updated

Example k-uniform tilings
1-uniform n1.svg
1-uniform (regular)
1-uniform n6.svg
1-uniform (semiregular)
2-uniform n1.svg
2-uniform tiling
3-uniform 5.svg
3-uniform tiling

A k-uniform tiling is a tiling of tilings of the plane by convex regular polygons, connected edge-to-edge, with k types of vertices. The 1-uniform tiling include 3 regular tilings, and 8 semiregular tilings. A 1-uniform tiling can be defined by its vertex configuration. Higher k-uniform tilings are listed by their vertex figures, but are not generally uniquely identified this way.

Contents

The complete lists of k-uniform tilings have been enumerated up to k=6. There are 20 2-uniform tilings, 61 3-uniform tilings, 151 4-uniform tilings, 332 5-uniform tilings, and 673 6-uniform tilings. This article lists all solutions up to k=5.

This square tiling is isogonal and isohedral, but not uniform because it is not edge-to-edge. Halfshift square tiling.svg
This square tiling is isogonal and isohedral, but not uniform because it is not edge-to-edge.

Other tilings of regular polygons that are not edge-to-edge allow different sized polygons, and continuous shifting positions of contact.

Classification

3-uniform tiling #57 of 61 colored
3-uniform 57.svg
by sides, yellow triangles, red squares (by polygons)
3-uniform n57.svg
by 4-isohedral positions, 3 shaded colors of triangles (by orbits)

Such periodic tilings of convex polygons may be classified by the number of orbits of vertices, edges and tiles. If there are k orbits of vertices, a tiling is known as k-uniform or k-isogonal; if there are t orbits of tiles, as t-isohedral; if there are e orbits of edges, as e-isotoxal.

k-uniform tilings with the same vertex figures can be further identified by their wallpaper group symmetry.

Enumeration

1-uniform tilings include 3 regular tilings, and 8 semiregular ones, with 2 or more types of regular polygon faces. There are 20 2-uniform tilings, 61 3-uniform tilings, 151 4-uniform tilings, 332 5-uniform tilings and 673 6-uniform tilings. Each can be grouped by the number m of distinct vertex figures, which are also called m-Archimedean tilings. [1]

Finally, if the number of types of vertices is the same as the uniformity (m = k below), then the tiling is said to be Krotenheerdt . In general, the uniformity is greater than or equal to the number of types of vertices (mk), as different types of vertices necessarily have different orbits, but not vice versa. Setting m = n = k, there are 11 such tilings for n = 1; 20 such tilings for n = 2; 39 such tilings for n = 3; 33 such tilings for n = 4; 15 such tilings for n = 5; 10 such tilings for n = 6; and 7 such tilings for n = 7.

k-uniform, m-Archimedean tiling counts [2]
m-Archimedean
123456Total
k-uniform111011
2 020020
3 02239061
4 03385330151
5 07414994150332
6 01002841879210673
Total11

1-uniform tilings (regular)

A tiling is said to be regular if the symmetry group of the tiling acts transitively on the flags of the tiling, where a flag is a triple consisting of a mutually incident vertex, edge and tile of the tiling. This means that, for every pair of flags, there is a symmetry operation mapping the first flag to the second. This is equivalent to the tiling being an edge-to-edge tiling by congruent regular polygons. There must be six equilateral triangles, four squares or three regular hexagons at a vertex, yielding the three regular tessellations.

Regular tilings (3)
p6m, *632p4m, *442
1-uniform n11.svg 1-uniform n1.svg 1-uniform n5.svg
Vertex type 3-3-3-3-3-3.svg
36
(t=1, e=1)
Vertex type 6-6-6.svg
63
(t=1, e=1)
Vertex type 4-4-4-4.svg
44
(t=1, e=1)

m-Archimedean and k-uniform tilings

Vertex-transitivity means that for every pair of vertices there is a symmetry operation mapping the first vertex to the second. [3]

If the requirement of flag-transitivity is relaxed to one of vertex-transitivity, while the condition that the tiling is edge-to-edge is kept, there are eight additional tilings possible, known as Archimedean, uniform or demiregular tilings. Note that there are two mirror image (enantiomorphic or chiral) forms of 34.6 (snub hexagonal) tiling, only one of which is shown in the following table. All other regular and semiregular tilings are achiral.

Grünbaum and Shephard distinguish the description of these tilings as Archimedean as referring only to the local property of the arrangement of tiles around each vertex being the same, and that as uniform as referring to the global property of vertex-transitivity. Though these yield the same set of tilings in the plane, in other spaces there are Archimedean tilings which are not uniform.

1-uniform tilings (semiregular)

Uniform tilings (8)
p6m, *632
1-uniform n4.svg

Vertex type 3-12-12.svg
[ 3.122]
(t=2, e=2)
1-uniform n6.svg

Vertex type 3-4-6-4.svg
[ 3.4.6.4]
(t=3, e=2)
1-uniform n3.svg

Vertex type 4-6-12.svg
[ 4.6.12]
(t=3, e=3)
1-uniform n7.svg

Vertex type 3-6-3-6.svg
[ (3.6)2]
(t=2, e=1)
1-uniform n2.svg

Vertex type 4-8-8.svg
[ 4.82]
(t=2, e=2)
1-uniform n9.svg

Vertex type 3-3-4-3-4.svg
[ 32.4.3.4]
(t=2, e=2)
1-uniform n8.svg

Vertex type 3-3-3-4-4.svg
[ 33.42]
(t=2, e=3)
1-uniform n10.svg

Vertex type 3-3-3-3-6.svg
[ 34.6]
(t=3, e=3)

2-uniform tilings

There are twenty (20) 2-uniform tilings of the Euclidean plane. (also called 2-isogonal tilings or demiregular tilings ) [4] [5] [6] Vertex types are listed for each. If two tilings share the same two vertex types, they are given subscripts 1,2.

2-uniform tilings (20)
p6m, *632p4m, *442
2-uniform n18.svg
[36; 32.4.3.4
(t=3, e=3)
2-uniform n9.svg
[3.4.6.4; 32.4.3.4
(t=4, e=4)
2-uniform n8.svg
[3.4.6.4; 33.42]
(t=4, e=4)
2-uniform n5.svg
[3.4.6.4; 3.42.6]
(t=5, e=5)
2-uniform n1.svg
[4.6.12; 3.4.6.4]
(t=4, e=4)
2-uniform n13.svg
[36; 32.4.12]
(t=4, e=4)
2-uniform n2.svg
[3.12.12; 3.4.3.12]
(t=3, e=3)
p6m, *632p6, 632p6, 632cmm, 2*22pmm, *2222cmm, 2*22pmm, *2222
2-uniform n10.svg
[36; 32.62]
(t=2, e=3)
2-uniform n19.svg
[36; 34.6]1
(t=3, e=3)
2-uniform n20.svg
[36; 34.6]2
(t=5, e=7)
2-uniform n12.svg
[32.62; 34.6]
(t=2, e=4)
2-uniform n11.svg
[3.6.3.6; 32.62]
(t=2, e=3)
2-uniform n6.svg
[3.42.6; 3.6.3.6]2
(t=3, e=4)
2-uniform n7.svg
[3.42.6; 3.6.3.6]1
(t=4, e=4)
p4g, 4*2pgg, 22×cmm, 2*22cmm, 2*22pmm, *2222cmm, 2*22
2-uniform n16.svg
[33.42; 32.4.3.4]1
(t=4, e=5)
2-uniform n17.png
[33.42; 32.4.3.4]2
(t=3, e=6)
2-uniform n4.svg
[44; 33.42]1
(t=2, e=4)
2-uniform n3.svg
[44; 33.42]2
(t=3, e=5)
2-uniform n14.svg
[36; 33.42]1
(t=3, e=4)
2-uniform n15.svg
[36; 33.42]2
(t=4, e=5)

3-uniform tilings

There are 61 3-uniform tilings of the Euclidean plane. 39 are 3-Archimedean with 3 distinct vertex types, while 22 have 2 identical vertex types in different symmetry orbits. Chavey (1989)

3-uniform tilings, 3 vertex types

3-uniform tilings with 3 vertex types (39)
3-uniform 5.svg
[3.426; 3.6.3.6; 4.6.12]
(t=6, e=7)
3-uniform 6.svg
[36; 324.12; 4.6.12]
(t=5, e=6)
3-uniform 7.svg
[324.12; 3.4.6.4; 3.122]
(t=5, e=6)
3-uniform 8.svg
[3.4.3.12; 3.4.6.4; 3.122]
(t=5, e=6)
3-uniform 35.svg
[3342; 324.12; 3.4.6.4]
(t=6, e=8)
3-uniform 47.svg
[36; 3342; 324.12]
(t=6, e=7)
3-uniform 48.svg
[36; 324.3.4; 324.12]
(t=5, e=6)
3-uniform 56.svg
[346; 3342; 324.3.4]
(t=5, e=6)
3-uniform 24.svg
[36; 324.3.4; 3.426]
(t=5, e=6)
3-uniform 34.svg
[36; 324.3.4; 3.4.6.4]
(t=5, e=6)
3-uniform 36.svg
[36; 3342; 3.4.6.4]
(t=6, e=6)
3-uniform 37.svg
[36; 324.3.4; 3.4.6.4]
(t=6, e=6)
3-uniform 54.svg
[36; 3342; 324.3.4]
(t=4, e=5)
3-uniform 9.svg
[324.12; 3.4.3.12; 3.122]
(t=4, e=7)
3-uniform 22.svg
[3.4.6.4; 3.426; 44]
(t=3, e=4)
3-uniform 25.svg
[324.3.4; 3.4.6.4; 3.426]
(t=4, e=6)
3-uniform 23.svg
[3342; 324.3.4; 44]
(t=4, e=6)
3-uniform 11.svg
[3.426; 3.6.3.6; 44]
(t=5, e=7)
3-uniform 12.svg
[3.426; 3.6.3.6; 44]
(t=6, e=7)
3-uniform 17.svg
[3.426; 3.6.3.6; 44]
(t=4, e=5)
3-uniform 18.svg
[3.426; 3.6.3.6; 44]
(t=5, e=6)
3-uniform 27.svg
[3342; 3262; 3.426]
(t=5, e=8)
3-uniform 29.svg
[3262; 3.426; 3.6.3.6]
(t=4, e=7)
3-uniform 31.svg
[3262; 3.426; 3.6.3.6]
(t=5, e=7)
3-uniform 33.svg
[346; 3342; 3.426]
(t=5, e=7)
3-uniform 1.svg
[3262; 3.6.3.6; 63]
(t=4, e=5)
3-uniform 2.svg
[3262; 3.6.3.6; 63]
(t=2, e=4)
3-uniform 3.svg
[346; 3262; 63]
(t=2, e=5)
3-uniform 4.svg
[36; 3262; 63]
(t=2, e=3)
3-uniform 38.svg
[36; 346; 3262]
(t=5, e=8)
3-uniform 40.svg
[36; 346; 3262]
(t=3, e=5)
3-uniform 41.svg
[36; 346; 3262]
(t=3, e=6)
3-uniform 44.svg
[36; 346; 3.6.3.6]
(t=5, e=6)
3-uniform 42.svg
[36; 346; 3.6.3.6]
(t=4, e=4)
3-uniform 43.svg
[36; 346; 3.6.3.6]
(t=3, e=3)
3-uniform 14.svg
[36; 3342; 44]
(t=4, e=6)
3-uniform 15.svg
[36; 3342; 44]
(t=5, e=7)
3-uniform 20.svg
[36; 3342; 44]
(t=3, e=5)
3-uniform 21.svg
[36; 3342; 44]
(t=4, e=6)

3-uniform tilings, 2 vertex types (2:1)

3-uniform tilings (2:1) (22)
3-uniform 26.svg
[(3.4.6.4)2; 3.426]
(t=6, e=6)
3-uniform 58.svg
[(36)2; 346]
(t=3, e=4)
3-uniform 59.svg
[(36)2; 346]
(t=5, e=5)
3-uniform 60.svg
[(36)2; 346]
(t=7, e=9)
3-uniform 61.svg
[36; (346)2]
(t=4, e=6)
3-uniform 57.svg
[36; (324.3.4)2]
(t=4, e=5)
3-uniform 28.svg
[(3.426)2; 3.6.3.6]
(t=6, e=8)
3-uniform 30.svg
[3.426; (3.6.3.6)2]
(t=4, e=6)
3-uniform 32.svg
[3.426; (3.6.3.6)2]
(t=5, e=6)
3-uniform 39.svg
[3262; (3.6.3.6)2]
(t=3, e=5)
3-uniform 45.svg
[(346)2; 3.6.3.6]
(t=4, e=7)
3-uniform 46.svg
[(346)2; 3.6.3.6]
(t=4, e=7)
3-uniform 10.svg
[3342; (44)2]
(t=4, e=7)
3-uniform 13.svg
[(3342)2; 44]
(t=5, e=7)
3-uniform 16.svg
[3342; (44)2]
(t=3, e=6)
3-uniform 19.svg
[(3342)2; 44]
(t=4, e=6)
3-uniform 53.svg
[(3342)2; 324.3.4]
(t=5, e=8)
3-uniform 55.svg
[3342; (324.3.4)2]
(t=6, e=9)
3-uniform 52.svg
[36; (3342)2]
(t=5, e=7)
3-uniform 51.svg
[36; (3342)2]
(t=4, e=6)
3-uniform 50.svg
[(36)2; 3342]
(t=6, e=7)
3-uniform 49.svg
[(36)2; 3342]
(t=5, e=6)

4-uniform tilings

There are 151 4-uniform tilings of the Euclidean plane. Brian Galebach's search reproduced Krotenheerdt's list of 33 4-uniform tilings with 4 distinct vertex types, as well as finding 85 of them with 3 vertex types, and 33 with 2 vertex types.

4-uniform tilings, 4 vertex types

There are 33 with 4 types of vertices.

4-uniform tilings with 4 vertex types (33)
4-uniform 6.svg
[33434; 3262; 3446; 63]
4-uniform 26.svg
[3342; 3262; 3446; 46.12]
4-uniform 27.svg
[33434; 3262; 3446; 46.12]
4-uniform 131.svg
[36; 3342; 33434; 334.12]
4-uniform 34.svg
[36; 33434; 334.12; 3.122]
4-uniform 35.svg
[36; 33434; 343.12; 3.122]
4-uniform 101.svg
[36; 3342; 33434; 3464]
4-uniform 103.svg
[36; 3342; 33434; 3464]
4-uniform 84.svg
[36; 33434; 3464; 3446]
4-uniform 9.svg
[346; 3262; 3636; 63]
4-uniform 23.svg
[346; 3262; 3636; 63]
4-uniform 30.svg
[334.12; 343.12; 3464; 46.12]
4-uniform 37.svg
[3342; 334.12; 343.12; 3.122]
4-uniform 81.svg
[3342; 334.12; 343.12; 44]
4-uniform 36.svg
[3342; 334.12; 343.12; 3.122]
4-uniform 82.svg
[36; 3342; 33434; 44]
4-uniform 85.svg
[33434; 3262; 3464; 3446]
4-uniform 92.svg
[36; 3342; 3446; 3636]
4-uniform 88.svg
[36; 346; 3446; 3636]
4-uniform 91.svg
[36; 346; 3446; 3636]
4-uniform 96.svg
[36; 346; 3342; 3446]
4-uniform 98.svg
[36; 346; 3342; 3446]
4-uniform 5.svg
[36; 346; 3262; 63]
4-uniform 20.svg
[36; 346; 3262; 63]
4-uniform 12.svg
[36; 346; 3262; 63]
4-uniform 13.svg
[36; 346; 3262; 63]
4-uniform 115.svg
[36; 346; 3262; 3636]
4-uniform 3.svg
[3342; 3262; 3446; 63]
4-uniform 18.svg
[3342; 3262; 3446; 63]
4-uniform 66.svg
[3262; 3446; 3636; 44]
4-uniform 70.svg
[3262; 3446; 3636; 44]
4-uniform 46.svg
[3262; 3446; 3636; 44]
4-uniform 50.svg
[3262; 3446; 3636; 44]

4-uniform tilings, 3 vertex types (2:1:1)

There are 85 with 3 types of vertices.

4-uniform tilings (2:1:1)
4-uniform 25.svg
[3464; (3446)2; 46.12]
4-uniform 28.svg
[3464; 3446; (46.12)2]
4-uniform 31.svg
[334.12; 3464; (3.122)2]
4-uniform 32.svg
[343.12; 3464; (3.122)2]
4-uniform 108.svg
[33434; 343.12; (3464)2]
4-uniform 130.svg
[(36)2; 3342; 334.12]
4-uniform 94.svg
[(3464)2; 3446; 3636]
4-uniform 95.svg
[3464; 3446; (3636)2]
4-uniform 83.svg
[3464; (3446)2; 3636]
4-uniform 146.svg
[(36)2; 3342; 33434]
4-uniform 138.svg
[(36)2; 3342; 33434]
4-uniform 1.svg
[36; 3262; (63)2]
4-uniform 2.svg
[36; 3262; (63)2]
4-uniform 7.svg
[36; (3262)2; 63]
4-uniform 8.svg
[36; (3262)2; 63]
4-uniform 14.svg
[36; 3262; (63)2]
4-uniform 17.svg
[36; 3262; (63)2]
4-uniform 110.svg
[36; (346)2; 3262]
4-uniform 111.svg
[36; (3262)2; 3636]
4-uniform 10.svg
[(346)2; 3262; 63]
4-uniform 24.svg
[(346)2; 3262; 63]
4-uniform 118.svg
[346; 3262; (3636)2]
4-uniform 119.svg
[346; 3262; (3636)2]
4-uniform 102.svg
[3342; 33434; (3464)2]
4-uniform 105.svg
[36; 33434; (3464)2]
4-uniform 104.svg
[36; (33434)2; 3464]
4-uniform 100.svg
[36; (3342)2; 3464]
4-uniform 93.svg
[(3464)2; 3446; 3636]
4-uniform 97.svg
[346; (33434)2; 3446]
4-uniform 145.svg
[36; 3342; (33434)2]
4-uniform 147.svg
[36; 3342; (33434)2]
4-uniform 57.svg
[(3342)2; 33434; 44]
4-uniform 79.svg
[(3342)2; 33434; 44]
4-uniform 80.svg
[3464; (3446)2; 44]
4-uniform 132.svg
[33434; (334.12)2; 343.12]
4-uniform 19.svg
[36; (3262)2; 63]
4-uniform 4.svg
[36; (3262)2; 63]
4-uniform 109.svg
[36; 346; (3262)2]
4-uniform 122.svg
[(36)2; 346; 3262]
4-uniform 123.svg
[(36)2; 346; 3262]
4-uniform 128.svg
[(36)2; 346; 3636]
4-uniform 112.svg
[346; (3262)2; 3636]
4-uniform 113.svg
[346; (3262)2; 3636]
4-uniform 120.svg
[(346)2; 3262; 3636]
4-uniform 116.svg
[(346)2; 3262; 3636]
4-uniform 124.svg
[36; 346; (3636)2]
4-uniform 21.svg
[3262; (3636)2; 63]
4-uniform 22.svg
[3262; (3636)2; 63]
4-uniform 11.svg
[(3262)2; 3636; 63]
4-uniform 15.svg
[3262; 3636; (63)2]
4-uniform 16.svg
[346; 3262; (63)2]
4-uniform 121.svg
[346; (3262)2; 3636]
4-uniform 86.svg
[3262; 3446; (3636)2]
4-uniform 89.svg
[3262; 3446; (3636)2]
4-uniform 126.svg
[346; (3342)2; 3636]
4-uniform 127.svg
[346; (3342)2; 3636]
4-uniform 99.svg
[346; 3342; (3446)2]
4-uniform 39.svg
[3446; 3636; (44)2]
4-uniform 40.svg
[3446; 3636; (44)2]
4-uniform 59.svg
[3446; 3636; (44)2]
4-uniform 60.svg
[3446; 3636; (44)2]
4-uniform 44.svg
[(3446)2; 3636; 44]
4-uniform 45.svg
[(3446)2; 3636; 44]
4-uniform 48.svg
[(3446)2; 3636; 44]
4-uniform 49.svg
[(3446)2; 3636; 44]
4-uniform 68.svg
[(3446)2; 3636; 44]
4-uniform 69.svg
[(3446)2; 3636; 44]
4-uniform 64.svg
[(3446)2; 3636; 44]
4-uniform 65.svg
[(3446)2; 3636; 44]
4-uniform 47.svg
[3446; (3636)2; 44]
4-uniform 51.svg
[3446; (3636)2; 44]
4-uniform 67.svg
[3446; (3636)2; 44]
4-uniform 71.svg
[3446; (3636)2; 44]
4-uniform 43.svg
[36; 3342; (44)2]
4-uniform 63.svg
[36; 3342; (44)2]
4-uniform 54.svg
[36; (3342)2; 44]
4-uniform 42.svg
[36; 3342; (44)2]
4-uniform 62.svg
[36; 3342; (44)2]
4-uniform 77.svg
[36; (3342)2; 44]
4-uniform 78.svg
[36; (3342)2; 44]
4-uniform 73.svg
[36; (3342)2; 44]
4-uniform 55.svg
[(36)2; 3342; 44]
4-uniform 56.svg
[(36)2; 3342; 44]
4-uniform 74.svg
[(36)2; 3342; 44]
4-uniform 75.svg
[(36)2; 3342; 44]

4-uniform tilings, 2 vertex types (2:2) and (3:1)

There are 33 with 2 types of vertices, 12 with two pairs of types, and 21 with 3:1 ratio of types.

4-uniform tilings (2:2)
4-uniform 29.svg
[(3464)2; (46.12)2]
4-uniform 106.svg
[(33434)2; (3464)2]
4-uniform 107.svg
[(33434)2; (3464)2]
4-uniform 125.svg
[(346)2; (3636)2]
4-uniform 150.svg
[(36)2; (346)2]
4-uniform 143.svg
[(3342)2; (33434)2]
4-uniform 41.svg
[(3342)2; (44)2]
4-uniform 52.svg
[(3342)2; (44)2]
4-uniform 61.svg
[(3342)2; (44)2]
4-uniform 139.svg
[(36)2; (3342)2]
4-uniform 140.svg
[(36)2; (3342)2]
4-uniform 141.svg
[(36)2; (3342)2]
4-uniform tilings (3:1)
4-uniform 33.svg
[343.12; (3.122)3]
4-uniform 129.svg
[(346)3; 3636]
4-uniform 151.svg
[36; (346)3]
4-uniform 148.svg
[(36)3; 346]
4-uniform 149.svg
[(36)3; 346]
4-uniform 142.svg
[(3342)3; 33434]
4-uniform 144.svg
[3342; (33434)3]
4-uniform 87.svg
[3446; (3636)3]
4-uniform 90.svg
[3446; (3636)3]
4-uniform 114.svg
[3262; (3636)3]
4-uniform 117.svg
[3262; (3636)3]
4-uniform 38.svg
[3342; (44)3]
4-uniform 58.svg
[3342; (44)3]
4-uniform 53.svg
[(3342)3; 44]
4-uniform 72.svg
[(3342)3; 44]
4-uniform 76.svg
[(3342)3; 44]
4-uniform 133.svg
[36; (3342)3]
4-uniform 134.svg
[36; (3342)3]
4-uniform 135.svg
[36; (3342)3]
4-uniform 136.svg
[(36)3; 3342]
4-uniform 137.svg
[(36)3; 3342]

5-uniform tilings

There are 332 5-uniform tilings of the Euclidean plane. Brian Galebach's search identified 332 5-uniform tilings, with 2 to 5 types of vertices. There are 74 with 2 vertex types, 149 with 3 vertex types, 94 with 4 vertex types, and 15 with 5 vertex types.

5-uniform tilings, 5 vertex types

There are 15 5-uniform tilings with 5 unique vertex figure types.

5-uniform tilings, 5 types
5-uniform 29.svg
[33434; 3262; 3464; 3446; 63]
5-uniform 30.svg
[36; 346; 3262; 3636; 63]
5-uniform 35.svg
[36; 346; 3342; 3446; 46.12]
5-uniform 128.svg
[346; 3342; 33434; 3446; 44]
5-uniform 196.svg
[36; 33434; 3464; 3446; 3636]
5-uniform 197.svg
[36; 346; 3464; 3446; 3636]
5-uniform 43.svg
[33434; 334.12; 3464;
3.12.12; 46.12]
5-uniform 75.svg
[36; 346; 3446; 3636; 44]
5-uniform 80.svg
[36; 346; 3446; 3636; 44]
5-uniform 120.svg
[36; 346; 3446; 3636; 44]
5-uniform 123.svg
[36; 346; 3446; 3636; 44]
5-uniform 124.svg
[36; 3342; 3446; 3636; 44]
5-uniform 125.svg
[36; 346; 3342; 3446; 44]
5-uniform 187.svg
[36; 3342; 3262; 3446; 3636]
5-uniform 199.svg
[36; 346; 3342; 3262; 3446]

5-uniform tilings, 4 vertex types (2:1:1:1)

There are 94 5-uniform tilings with 4 vertex types.

5-uniform tilings (2:1:1:1)
5-uniform 33.svg
[36; 33434; (3446)2; 46.12]
5-uniform 37.svg
[36; 33434; 3446; (46.12)2]
5-uniform 38.svg
[36; 33434; 3464; (46.12)2]
5-uniform 207.svg
[36; 3342; (334.12)2; 3464]
5-uniform 211.svg
[36; (3342)2; 334.12; 3464]
5-uniform 213.svg
[36; 33434; (334.12)2; 3464]
5-uniform 46.svg
[36; 33434; 334.12; (3.12.12)2]
5-uniform 285.svg
[36; 346; (3342)2; 334.12]
5-uniform 47.svg
[36; 33434; 343.12; (3.12.12)2]
5-uniform 48.svg
[(3342)2; 334.12; 343.12; 3.12.12]
5-uniform 49.svg
[(3342)2; 334.12; 343.12; 3.12.12]
5-uniform 94.svg
[(3342)2; 334.12; 343.12; 44]
5-uniform 93.svg
[33434; 3262; (3446)2; 44]
5-uniform 144.svg
[36; (3342)2; 33434; 44]
5-uniform 145.svg
[346; (3342)2; 33434; 44]
5-uniform 146.svg
[36; 3342; (3464)2; 3446]
5-uniform 147.svg
[3342; 3262; 3464; (3446)2]
5-uniform 148.svg
[33434; 3262; 3464; (3446)2]
5-uniform 149.svg
[36; 33434; (3446)2; 3636]
5-uniform 152.svg
[3342; 33434; 3464; (3446)2]
5-uniform 153.svg
[36; 33434; (3262)2; 3446]
5-uniform 157.svg
[3342; 3262; (3464)2; 3446]
5-uniform 158.svg
[33434; 3262; (3464)2; 3446]
5-uniform 206.svg
[346; 3342; (3464)2; 3446]
5-uniform 209.svg
[36; (3342)2; 33434; 3464]
5-uniform 210.svg
[36; (3342)2; 33434; 3464]
5-uniform 212.svg
[36; 3342; (33434)2; 3464]
5-uniform 214.svg
[(36)2; 3342; 33434; 3464]
5-uniform 215.svg
[36; 3342; (33434)2; 3464]
5-uniform 286.svg
[(36)2; 3342; 33434; 334.12]
5-uniform 287.svg
[36; 33434; (334.12)2; 343.12]
5-uniform 297.svg
[(36)2; 346; 3342; 33434]
5-uniform 11.svg
[(36)2; 346; 3262; 63]
5-uniform 12.svg
[36; (346)2; 3262; 63]
5-uniform 228.svg
[(36)2; 346; 3262; 3636]
5-uniform 230.svg
[36; 346; (3262)2; 3636]
5-uniform 246.svg
[36; (346)2; 3262; 3636]
5-uniform 242.svg
[(36)2; 346; 3262; 3636]
5-uniform 245.svg
[36; 346; 3262; (3636)2]
5-uniform 247.svg
[36; (346)2; 3262; 3636]
5-uniform 248.svg
[36; (346)2; 3262; 3636]
5-uniform 252.svg
[36; (346)2; 3262; 3636]
5-uniform 253.svg
[36; 346; (3262)2; 3636]
5-uniform 254.svg
[36; 346; (3262)2; 3636]
5-uniform 3.svg
[36; 346; 3262; (63)2]
5-uniform 7.svg
[36; 346; (3262)2; 63]
5-uniform 8.svg
[346; (3262)2; 3636; 63]
5-uniform 10.svg
[(346)2; 3262; 3636; 63]
5-uniform 14.svg
[(36)2; 346; 3262; 63]
5-uniform 15.svg
[(36)2; 346; 3262; 63]
5-uniform 18.svg
[36; 346; 3262; (63)2]
5-uniform 20.svg
[36; 346; 3262; (63)2]
5-uniform 21.svg
[36; 346; 3262; (63)2]
5-uniform 23.svg
[36; 346; (3262)2; 63]
5-uniform 24.svg
[346; (3262)2; 3636; 63]
5-uniform 26.svg
[346; (3262)2; 3636; 63]
5-uniform 27.svg
[346; (3262)2; 3636; 63]
5-uniform 28.svg
[346; 3262; 3636; (63)2]
5-uniform 31.svg
[346; (3262)2; 3636; 63]
5-uniform 16.svg
[3342; 3262; 3446; (63)2]
5-uniform 1.svg
[3342; 3262; 3446; (63)2]
5-uniform 58.svg
[3262; 3446; 3636; (44)2]
5-uniform 62.svg
[3262; 3446; 3636; (44)2]
5-uniform 73.svg
[3262; 3446; (3636)2; 44]
5-uniform 78.svg
[3262; 3446; (3636)2; 44]
5-uniform 91.svg
[3342; 3262; 3446; (44)2]
5-uniform 92.svg
[346; 3342; 3446; (44)2]
5-uniform 103.svg
[3262; 3446; 3636; (44)2]
5-uniform 107.svg
[3262; 3446; 3636; (44)2]
5-uniform 118.svg
[3262; 3446; (3636)2; 44]
5-uniform 121.svg
[3262; 3446; (3636)2; 44]
5-uniform 126.svg
[3342; 3262; 3446; (44)2]
5-uniform 127.svg
[346; 3342; 3446; (44)2]
5-uniform 143.svg
[346; (3342)2; 3636; 44]
5-uniform 160.svg
[36; 3342; (3446)2; 3636]
5-uniform 167.svg
[346; (3342)2; 3446; 3636]
5-uniform 168.svg
[346; (3342)2; 3446; 3636]
5-uniform 169.svg
[(36)2; 346; 3446; 3636]
5-uniform 171.svg
[36; 3342; (3446)2; 3636]
5-uniform 176.svg
[346; (3342)2; 3446; 3636]
5-uniform 177.svg
[346; (3342)2; 3446; 3636]
5-uniform 178.svg
[(36)2; 346; 3446; 3636]
5-uniform 186.svg
[(36)2; 3342; 3446; 3636]
5-uniform 188.svg
[36; 3342; 3446; (3636)2]
5-uniform 190.svg
[346; 3342; (3446)2; 3636]
5-uniform 198.svg
[36; 346; (3342)2; 3446]
5-uniform 240.svg
[346; (3342)2; 3262; 3636]
5-uniform 241.svg
[346; (3342)2; 3262; 3636]
5-uniform 200.svg
[36; (346)2; 3342; 3446]
5-uniform 202.svg
[36; (346)2; 3342; 3446]
5-uniform 203.svg
[36; (346)2; 3342; 3446]
5-uniform 224.svg
[36; 346; (3342)2; 3262]
5-uniform 277.svg
[(36)2; 346; 3342; 3636]
5-uniform 278.svg
[(36)2; 346; 3342; 3636]

5-uniform tilings, 3 vertex types (3:1:1) and (2:2:1)

There are 149 5-uniform tilings, with 60 having 3:1:1 copies, and 89 having 2:2:1 copies.

5-uniform tilings (3:1:1)
5-uniform 32.svg
[36; 334.12; (46.12)3]
5-uniform 40.svg
[3464; 3446; (46.12)3]
5-uniform 42.svg
[36; (334.12)3; 46.12]
5-uniform 45.svg
[334.12; 343.12; (3.12.12)3]
5-uniform 288.svg
[36; (33434)3; 343.12]
5-uniform 4.svg
[3262; 3636; (63)3]
5-uniform 5.svg
[346; 3262; (63)3]
5-uniform 6.svg
[36; (3262)3; 63]
5-uniform 22.svg
[36; (3262)3; 63]
5-uniform 25.svg
[3262; (3636)3; 63]
5-uniform 51.svg
[3446; 3636; (44)3]
5-uniform 52.svg
[3446; 3636; (44)3]
5-uniform 54.svg
[36; 3342; (44)3]
5-uniform 55.svg
[36; 3342; (44)3]
5-uniform 74.svg
[3446; (3636)3; 44]
5-uniform 79.svg
[3446; (3636)3; 44]
5-uniform 84.svg
[36; (3342)3; 44]
5-uniform 85.svg
[36; (3342)3; 44]
5-uniform 87.svg
[36; (3342)3; 44]
5-uniform 89.svg
[(36)3; 3342; 44]
5-uniform 90.svg
[(36)3; 3342; 44]
5-uniform 96.svg
[3446; 3636; (44)3]
5-uniform 97.svg
[3446; 3636; (44)3]
5-uniform 99.svg
[36; 3342; (44)3]
5-uniform 100.svg
[36; 3342; (44)3]
5-uniform 154.svg
[(3342)3; 3262; 3446]
5-uniform 163.svg
[3262; 3446; (3636)3]
5-uniform 165.svg
[3262; 3446; (3636)3]
5-uniform 173.svg
[3262; 3446; (3636)3]
5-uniform 174.svg
[3262; 3446; (3636)3]
5-uniform 119.svg
[3446; (3636)3; 44]
5-uniform 122.svg
[3446; (3636)3; 44]
5-uniform 130.svg
[36; (3342)3; 44]
5-uniform 131.svg
[36; (3342)3; 44]
5-uniform 132.svg
[36; (3342)3; 44]
5-uniform 134.svg
[(36)3; 3342; 44]
5-uniform 135.svg
[(36)3; 3342; 44]
5-uniform 137.svg
[36; (3342)3; 44]
5-uniform 140.svg
[36; (3342)3; 44]
5-uniform 141.svg
[36; (3342)3; 44]
5-uniform 184.svg
[(3342)3; 3446; 3636]
5-uniform 185.svg
[(3342)3; 3446; 3636]
5-uniform 204.svg
[346; (3342)3; 3446]
5-uniform 225.svg
[(36)3; 346; 3262]
5-uniform 226.svg
[(36)3; 346; 3262]
5-uniform 227.svg
[(36)3; 346; 3262]
5-uniform 233.svg
[346; (3262)3; 3636]
5-uniform 243.svg
[346; (3262)3; 3636]
5-uniform 249.svg
[(346)3; 3262; 3636]
5-uniform 251.svg
[(346)3; 3262; 3636]
5-uniform 256.svg
[(36)3; 346; 3262]
5-uniform 257.svg
[(36)3; 346; 3262]
5-uniform 261.svg
[(346)3; 3262; 3636]
5-uniform 266.svg
[36; 346; (3636)3]
5-uniform 268.svg
[36; 346; (3636)3]
5-uniform 272.svg
[36; 346; (3636)3]
5-uniform 273.svg
[36; 346; (3636)3]
5-uniform 279.svg
[(36)3; 346; 3636]
5-uniform 280.svg
[(36)3; 346; 3636]
5-uniform 281.svg
[36; (346)3; 3636]
5-uniform tilings (2:2:1)
5-uniform 34.svg
[(3446)2; (3636)2; 46.12]
5-uniform 208.svg
[(36)2; (3342)2; 3464]
5-uniform 217.svg
[(3342)2; 334.12; (3464)2]
5-uniform 218.svg
[36; (33434)2; (3464)2]
5-uniform 220.svg
[3342; (33434)2; (3464)2]
5-uniform 221.svg
[3342; (33434)2; (3464)2]
5-uniform 222.svg
[3342; (33434)2; (3464)2]
5-uniform 223.svg
[(33434)2; 343.12; (3464)2]
5-uniform 2.svg
[36; (3262)2; (63)2]
5-uniform 9.svg
[(3262)2; (3636)2; 63]
5-uniform 307.svg
[(36)2; (3342)2; 33434]
5-uniform 313.svg
[(36)2; 3342; (33434)2]
5-uniform 314.svg
[346; (3342)2; (33434)2]
5-uniform 316.svg
[(36)2; 3342; (33434)2]
5-uniform 317.svg
[(36)2; 3342; (33434)2]
5-uniform 19.svg
[(3262)2; 3636; (63)2]
5-uniform 56.svg
[(3446)2; 3636; (44)2]
5-uniform 57.svg
[(3446)2; 3636; (44)2]
5-uniform 59.svg
[3446; (3636)2; (44)2]
5-uniform 60.svg
[(3446)2; 3636; (44)2]
5-uniform 61.svg
[(3446)2; 3636; (44)2]
5-uniform 63.svg
[3446; (3636)2; (44)2]
5-uniform 67.svg
[36; (3342)2; (44)2]
5-uniform 68.svg
[(36)2; 3342; (44)2]
5-uniform 69.svg
[(36)2; 3342; (44)2]
5-uniform 70.svg
[(3446)2; 3636; (44)2]
5-uniform 71.svg
[(3446)2; 3636; (44)2]
5-uniform 72.svg
[(3446)2; 3636; (44)2]
5-uniform 76.svg
[(3446)2; 3636; (44)2]
5-uniform 77.svg
[(3446)2; 3636; (44)2]
5-uniform 86.svg
[36; (3342)2; (44)2]
5-uniform 88.svg
[(36)2; (3342)2; 44]
5-uniform 101.svg
[(3446)2; 3636; (44)2]
5-uniform 102.svg
[(3446)2; 3636; (44)2]
5-uniform 104.svg
[3446; (3636)2; (44)2]
5-uniform 105.svg
[(3446)2; 3636; (44)2]
5-uniform 106.svg
[(3446)2; 3636; (44)2]
5-uniform 108.svg
[3446; (3636)2; (44)2]
5-uniform 111.svg
[36; (3342)2; (44)2]
5-uniform 112.svg
[(36)2; 3342; (44)2]
5-uniform 113.svg
[(36)2; 3342; (44)2]
5-uniform 115.svg
[36; (3342)2; (44)2]
5-uniform 116.svg
[36; (3342)2; (44)2]
5-uniform 117.svg
[(3446)2; 3636; (44)2]
5-uniform 133.svg
[(36)2; (3342)2; 44]
5-uniform 138.svg
[(36)2; (3342)2; 44]
5-uniform 139.svg
[(36)2; (3342)2; 44]
5-uniform 142.svg
[(36)2; (3342)2; 44]
5-uniform 150.svg
[(33434)2; 3262; (3446)2]
5-uniform 155.svg
[3342; (3262)2; (3446)2]
5-uniform 156.svg
[3342; (3262)2; (3446)2]
5-uniform 161.svg
[3262; (3446)2; (3636)2]
5-uniform 162.svg
[(3262)2; 3446; (3636)2]
5-uniform 172.svg
[(3262)2; 3446; (3636)2]
5-uniform 179.svg
[(3464)2; (3446)2; 3636]
5-uniform 180.svg
[3262; (3446)2; (3636)2]
5-uniform 182.svg
[3262; (3446)2; (3636)2]
5-uniform 189.svg
[(346)2; (3446)2; 3636]
5-uniform 191.svg
[(346)2; (3446)2; 3636]
5-uniform 192.svg
[(346)2; (3446)2; 3636]
5-uniform 193.svg
[(346)2; (3446)2; 3636]
5-uniform 194.svg
[(3342)2; (3446)2; 3636]
5-uniform 195.svg
[(3342)2; (3446)2; 3636]
5-uniform 201.svg
[(346)2; (3342)2; 3446]
5-uniform 205.svg
[(346)2; 3342; (3446)2]
5-uniform 229.svg
[(36)2; (346)2; 3262]
5-uniform 231.svg
[36; (346)2; (3262)2]
5-uniform 232.svg
[(36)2; 346; (3262)2]
5-uniform 13.svg
[(346)2; (3262)2; 63]
5-uniform 17.svg
[36; (3262)2; (63)2]
5-uniform 234.svg
[36; (346)2; (3262)2]
5-uniform 235.svg
[346; (3262)2; (3636)2]
5-uniform 236.svg
[(346)2; (3262)2; 3636]
5-uniform 237.svg
[36; (346)2; (3262)2]
5-uniform 250.svg
[(346)2; 3262; (3636)2]
5-uniform 255.svg
[(346)2; (3262)2; 3636]
5-uniform 258.svg
[(36)2; (346)2; 3262]
5-uniform 259.svg
[(36)2; (346)2; 3262]
5-uniform 283.svg
[(36)2; (346)2; 3636]
5-uniform 284.svg
[(36)2; (346)2; 3636]
5-uniform 296.svg
[36; (346)2; (3342)2]
5-uniform 260.svg
[(36)2; (346)2; 3262]
5-uniform 264.svg
[36; (346)2; (3262)2]
5-uniform 265.svg
[36; (346)2; (3262)2]
5-uniform 269.svg
[346; (3342)2; (3636)2]
5-uniform 270.svg
[346; (3342)2; (3636)2]
5-uniform 271.svg
[(36)2; 346; (3636)2]
5-uniform 274.svg
[(36)2; (346)2; 3636]
5-uniform 298.svg
[(36)2; 3342; (33434)2]

5-uniform tilings, 2 vertex types (4:1) and (3:2)

There are 74 5-uniform tilings with 2 types of vertices, 27 with 4:1 and 47 with 3:2 copies of each.

5-uniform tilings (4:1)
5-uniform 36.svg
[(3464)4; 46.12]
5-uniform 44.svg
[343.12; (3.12.12)4]
5-uniform 318.svg
[36; (33434)4]
5-uniform 319.svg
[36; (33434)4]
5-uniform 320.svg
[(36)4; 346]
5-uniform 321.svg
[(36)4; 346]
5-uniform 322.svg
[(36)4; 346]
5-uniform 329.svg
[36; (346)4]
5-uniform 239.svg
[3262; (3636)4]
5-uniform 262.svg
[(346)4; 3262]
5-uniform 263.svg
[(346)4; 3262]
5-uniform 282.svg
[(346)4; 3636]
5-uniform 244.svg
[3262; (3636)4]
5-uniform 166.svg
[3446; (3636)4]
5-uniform 175.svg
[3446; (3636)4]
5-uniform 309.svg
[(3342)4; 33434]
5-uniform 312.svg
[3342; (33434)4]
5-uniform 50.svg
[3342; (44)4]
5-uniform 95.svg
[3342; (44)4]
5-uniform 83.svg
[(3342)4; 44]
5-uniform 129.svg
[(3342)4; 44]
5-uniform 136.svg
[(3342)4; 44]
5-uniform 299.svg
[36; (3342)4]
5-uniform 300.svg
[36; (3342)4]
5-uniform 289.svg
[36; (3342)4]
5-uniform 294.svg
[(36)4; 3342]
5-uniform 295.svg
[(36)4; 3342]

There are 29 5-uniform tilings with 3 and 2 unique vertex figure types.

5-uniform tilings (3:2)
5-uniform 39.svg
[(3464)2; (46.12)3]
5-uniform 41.svg
[(3464)2; (46.12)3]
5-uniform 151.svg
[(3464)3; (3446)2]
5-uniform 216.svg
[(33434)2; (3464)3]
5-uniform 219.svg
[(33434)3; (3464)2]
5-uniform 323.svg
[(36)2; (346)3]
5-uniform 324.svg
[(36)2; (346)3]
5-uniform 325.svg
[(36)3; (346)2]
5-uniform 326.svg
[(36)3; (346)2]
5-uniform 327.svg
[(36)3; (346)2]
5-uniform 328.svg
[(36)3; (346)2]
5-uniform 330.svg
[(36)2; (346)3]
5-uniform 331.svg
[(36)2; (346)3]
5-uniform 332.svg
[(36)2; (346)3]
5-uniform 238.svg
[(3262)2; (3636)3]
5-uniform 267.svg
[(346)3; (3636)2]
5-uniform 275.svg
[(346)3; (3636)2]
5-uniform 276.svg
[(346)2; (3636)3]
5-uniform 159.svg
[(3446)3; (3636)2]
5-uniform 164.svg
[(3446)2; (3636)3]
5-uniform 170.svg
[(3446)3; (3636)2]
5-uniform 181.svg
[(3446)2; (3636)3]
5-uniform 183.svg
[(3446)2; (3636)3]
5-uniform 308.svg
[(3342)3; (33434)2]
5-uniform 310.svg
[(3342)3; (33434)2]
5-uniform 311.svg
[(3342)2; (33434)3]
5-uniform 315.svg
[(3342)2; (33434)3]
5-uniform 53.svg
[(3342)2; (44)3]
5-uniform 64.svg
[(3342)2; (44)3]
5-uniform 65.svg
[(3342)2; (44)3]
5-uniform 66.svg
[(3342)3; (44)2]
5-uniform 81.svg
[(3342)2; (44)3]
5-uniform 82.svg
[(3342)3; (44)2]
5-uniform 98.svg
[(3342)2; (44)3]
5-uniform 109.svg
[(3342)2; (44)3]
5-uniform 110.svg
[(3342)3; (44)2]
5-uniform 114.svg
[(3342)3; (44)2]
5-uniform 290.svg
[(36)2; (3342)3]
5-uniform 291.svg
[(36)2; (3342)3]
5-uniform 292.svg
[(36)2; (3342)3]
5-uniform 293.svg
[(36)2; (3342)3]
5-uniform 301.svg
[(36)3; (3342)2]
5-uniform 302.svg
[(36)3; (3342)2]
5-uniform 303.svg
[(36)3; (3342)2]
5-uniform 304.svg
[(36)3; (3342)2]
5-uniform 305.svg
[(36)3; (3342)2]
5-uniform 306.svg
[(36)3; (3342)2]

Higher k-uniform tilings

k-uniform tilings have been enumerated up to 6. There are 673 6-uniform tilings of the Euclidean plane. Brian Galebach's search reproduced Krotenheerdt's list of 10 6-uniform tilings with 6 distinct vertex types, as well as finding 92 of them with 5 vertex types, 187 of them with 4 vertex types, 284 of them with 3 vertex types, and 100 with 2 vertex types.

Related Research Articles

In geometry, a polytope or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in the same or reverse order, and with the same angles between corresponding faces.

<span class="mw-page-title-main">Euclidean tilings by convex regular polygons</span> Subdivision of the plane into polygons that are all regular

Euclidean plane tilings by convex regular polygons have been widely used since antiquity. The first systematic mathematical treatment was that of Kepler in his Harmonices Mundi.

<span class="mw-page-title-main">Square tiling</span> Regular tiling of the Euclidean plane

In geometry, the square tiling, square tessellation or square grid is a regular tiling of the Euclidean plane. It has Schläfli symbol of {4,4}, meaning it has 4 squares around every vertex. Conway called it a quadrille.

<span class="mw-page-title-main">Triangular tiling</span> Regular tiling of the plane

In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilateral triangle is 60 degrees, six triangles at a point occupy a full 360 degrees. The triangular tiling has Schläfli symbol of {3,6}.

<span class="mw-page-title-main">Truncated hexagonal tiling</span>

In geometry, the truncated hexagonal tiling is a semiregular tiling of the Euclidean plane. There are 2 dodecagons (12-sides) and one triangle on each vertex.

<span class="mw-page-title-main">Truncated square tiling</span>

In geometry, the truncated square tiling is a semiregular tiling by regular polygons of the Euclidean plane with one square and two octagons on each vertex. This is the only edge-to-edge tiling by regular convex polygons which contains an octagon. It has Schläfli symbol of t{4,4}.

<span class="mw-page-title-main">Rhombitrihexagonal tiling</span> Semiregular tiling of the Euclidean plane

In geometry, the rhombitrihexagonal tiling is a semiregular tiling of the Euclidean plane. There are one triangle, two squares, and one hexagon on each vertex. It has Schläfli symbol of rr{3,6}.

<span class="mw-page-title-main">Snub trihexagonal tiling</span>

In geometry, the snub hexagonal tiling is a semiregular tiling of the Euclidean plane. There are four triangles and one hexagon on each vertex. It has Schläfli symbol sr{3,6}. The snub tetrahexagonal tiling is a related hyperbolic tiling with Schläfli symbol sr{4,6}.

<span class="mw-page-title-main">Elongated triangular tiling</span>

In geometry, the elongated triangular tiling is a semiregular tiling of the Euclidean plane. There are three triangles and two squares on each vertex. It is named as a triangular tiling elongated by rows of squares, and given Schläfli symbol {3,6}:e.

<span class="mw-page-title-main">Snub square tiling</span>

In geometry, the snub square tiling is a semiregular tiling of the Euclidean plane. There are three triangles and two squares on each vertex. Its Schläfli symbol is s{4,4}.

<span class="mw-page-title-main">Pentagonal tiling</span> A tiling of the plane by pentagons

In geometry, a pentagonal tiling is a tiling of the plane where each individual piece is in the shape of a pentagon.

In geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive.

In geometry, a uniform honeycomb or uniform tessellation or infinite uniform polytope, is a vertex-transitive honeycomb made from uniform polytope facets. All of its vertices are identical and there is the same combination and arrangement of faces at each vertex. Its dimension can be clarified as n-honeycomb for an n-dimensional honeycomb.

<span class="mw-page-title-main">Dodecagram</span> Star polygon with 12 vertices

In geometry, a dodecagram is a star polygon or compound with 12 vertices. There is one regular dodecagram polygon. There are also 4 regular compounds {12/2},{12/3},{12/4}, and {12/6}.

<span class="mw-page-title-main">Rhombitrioctagonal tiling</span> Semiregular tiling of the hyperbolic plane

In geometry, the rhombitrioctagonal tiling is a semiregular tiling of the hyperbolic plane. At each vertex of the tiling there is one triangle and one octagon, alternating between two squares. The tiling has Schläfli symbol rr{8,3}. It can be seen as constructed as a rectified trioctagonal tiling, r{8,3}, as well as an expanded octagonal tiling or expanded order-8 triangular tiling.

In geometry, the demiregular tilings are a set of Euclidean tessellations made from 2 or more regular polygon faces. Different authors have listed different sets of tilings. A more systematic approach looking at symmetry orbits are the 2-uniform tilings of which there are 20. Some of the demiregular ones are actually 3-uniform tilings.

<span class="mw-page-title-main">3-4-6-12 tiling</span> Uniform Tiling

In geometry of the Euclidean plane, the 3-4-6-12 tiling is one of 20 2-uniform tilings of the Euclidean plane by regular polygons, containing regular triangles, squares, hexagons and dodecagons, arranged in two vertex configuration: 3.4.6.4 and 4.6.12.

<span class="mw-page-title-main">Planigon</span> Convex polygon which can tile the plane by itself

In geometry, a planigon is a convex polygon that can fill the plane with only copies of itself. In the Euclidean plane there are 3 regular planigons; equilateral triangle, squares, and regular hexagons; and 8 semiregular planigons; and 4 demiregular planigons which can tile the plane only with other planigons.

<span class="mw-page-title-main">3-4-3-12 tiling</span>

In geometry of the Euclidean plane, the 3-4-3-12 tiling is one of 20 2-uniform tilings of the Euclidean plane by regular polygons, containing regular triangles, squares, and dodecagons, arranged in two vertex configuration: 3.4.3.12 and 3.12.12.

References

  1. k-uniform tilings by regular polygons Archived 2015-06-30 at the Wayback Machine Nils Lenngren, 2009
  2. "n-Uniform Tilings". probabilitysports.com. Retrieved 2019-06-21.
  3. Critchlow, p.60-61
  4. Critchlow, p.62-67
  5. Tilings and Patterns, Grünbaum and Shephard 1986, pp. 65-67
  6. "In Search of Demiregular Tilings" (PDF). Archived from the original (PDF) on 2016-05-07. Retrieved 2015-06-04.

Euclidean and general tiling links: