Moscow Mathematical Papyrus | |
---|---|
Pushkin State Museum of Fine Arts in Moscow | |
Date | 13th dynasty, Second Intermediate Period of Egypt |
Place of origin | Thebes |
Language(s) | Hieratic |
Size | Length: 5.5 metres (18 ft) Width: 3.8 to 7.6 cm (1.5 to 3 in) |
The Moscow Mathematical Papyrus, also named the Golenishchev Mathematical Papyrus after its first non-Egyptian owner, Egyptologist Vladimir Golenishchev, is an ancient Egyptian mathematical papyrus containing several problems in arithmetic, geometry, and algebra. Golenishchev bought the papyrus in 1892 or 1893 in Thebes. It later entered the collection of the Pushkin State Museum of Fine Arts in Moscow, where it remains today.
Based on the palaeography and orthography of the hieratic text, the text was most likely written down in the 13th Dynasty and based on older material probably dating to the Twelfth Dynasty of Egypt, roughly 1850 BC. [1] Approximately 5.5 m (18 ft) long and varying between 3.8 and 7.6 cm (1.5 and 3 in) wide, its format was divided by the Soviet Orientalist Vasily Vasilievich Struve [2] in 1930 [3] into 25 problems with solutions.
It is a well-known mathematical papyrus, usually referenced together with the Rhind Mathematical Papyrus. The Moscow Mathematical Papyrus is older than the Rhind Mathematical Papyrus, while the latter is the larger of the two. [4]
The problems in the Moscow Papyrus follow no particular order, and the solutions of the problems provide much less detail than those in the Rhind Mathematical Papyrus. The papyrus is well known for some of its geometry problems. Problems 10 and 14 compute a surface area and the volume of a frustum respectively. The remaining problems are more common in nature. [1]
Problems 2 and 3 are ship's part problems. One of the problems calculates the length of a ship's rudder and the other computes the length of a ship's mast given that it is 1/3 + 1/5 of the length of a cedar log originally 30 cubits long. [1]
ꜥḥꜥ (aha) in hieroglyphs | |||
---|---|---|---|
Era: New Kingdom (1550–1069 BC) | |||
Aha problems involve finding unknown quantities (referred to as aha, "stack") if the sum of the quantity and part(s) of it are given. The Rhind Mathematical Papyrus also contains four of these type of problems. Problems 1, 19, and 25 of the Moscow Papyrus are Aha problems. For instance, problem 19 asks one to calculate a quantity taken 1+1⁄2 times and added to 4 to make 10. [1] In other words, in modern mathematical notation one is asked to solve .
Most of the problems are pefsu problems (see: Egyptian algebra): 10 of the 25 problems. A pefsu measures the strength of the beer made from a hekat of grain
A higher pefsu number means weaker bread or beer. The pefsu number is mentioned in many offering lists. For example, problem 8 translates as:
Problems 11 and 23 are Baku problems. These calculate the output of workers. Problem 11 asks if someone brings in 100 logs measuring 5 by 5, then how many logs measuring 4 by 4 does this correspond to? Problem 23 finds the output of a shoemaker given that he has to cut and decorate sandals. [1]
Seven of the twenty-five problems are geometry problems and range from computing areas of triangles, to finding the surface area of a hemisphere (problem 10) and finding the volume of a frustum (a truncated pyramid). [1]
The tenth problem of the Moscow Mathematical Papyrus asks for a calculation of the surface area of a hemisphere (Struve, Gillings) or possibly the area of a semi-cylinder (Peet). Below we assume that the problem refers to the area of a hemisphere.
The text of problem 10 runs like this: "Example of calculating a basket. You are given a basket with a mouth of 4 1/2. What is its surface? Take 1/9 of 9 (since) the basket is half an egg-shell. You get 1. Calculate the remainder which is 8. Calculate 1/9 of 8. You get 2/3 + 1/6 + 1/18. Find the remainder of this 8 after subtracting 2/3 + 1/6 + 1/18. You get 7 + 1/9. Multiply 7 + 1/9 by 4 + 1/2. You get 32. Behold this is its area. You have found it correctly." [1] [5]
The solution amounts to computing the area as
The formula calculates for the area of a hemisphere, where the scribe of the Moscow Papyrus used to approximate π.
The fourteenth problem of the Moscow Mathematical calculates the volume of a frustum.
Problem 14 states that a pyramid has been truncated in such a way that the top area is a square of length 2 units, the bottom a square of length 4 units, and the height 6 units, as shown. The volume is found to be 56 cubic units, which is correct. [1]
The text of the example runs like this: "If you are told: a truncated pyramid of 6 for the vertical height by 4 on the base by 2 on the top: You are to square the 4; result 16. You are to double 4; result 8. You are to square this 2; result 4. You are to add the 16 and the 8 and the 4; result 28. You are to take 1/3 of 6; result 2. You are to take 28 twice; result 56. See, it is of 56. You will find [it] right" [6]
The solution to the problem indicates that the Egyptians knew the correct formula for obtaining the volume of a truncated pyramid:
where a and b are the base and top side lengths of the truncated pyramid and h is the height. Researchers have speculated how the Egyptians might have arrived at the formula for the volume of a frustum but the derivation of this formula is not given in the papyrus. [7]
Richard J. Gillings gave a cursory summary of the Papyrus' contents. [8] Numbers with overlines denote the unit fraction having that number as denominator, e.g. ; unit fractions were common objects of study in ancient Egyptian mathematics.
No. | Detail |
---|---|
1 | Damaged and unreadable. |
2 | Damaged and unreadable. |
3 | A cedar mast. of . Unclear. |
4 | Area of a triangle. of . |
5 | Pesus of loaves and bread. Same as No. 8. |
6 | Rectangle, area . Find and . |
7 | Triangle, area . Find and . |
8 | Pesus of loaves and bread. |
9 | Pesus of loaves and bread. |
10 | Area of curved surface of a hemisphere (or cylinder). |
11 | Loaves and basket. Unclear. |
12 | Pesu of beer. Unclear. |
13 | Pesus of loaves and beer. Same as No. 9. |
14 | Volume of a truncated pyramid. . |
15 | Pesu of beer. |
16 | Pesu of beer. Similar to No. 15. |
17 | Triangle, area . Find and . |
18 | Measuring cloth in cubits and palms. Unclear. |
19 | Solve the equation . Clear. |
20 | Pesu of 1000 loaves. Horus-eye fractions. |
21 | Mixing of sacrificial bread. |
22 | Pesus of loaves and beer. Exchange. |
23 | Computing the work of a cobbler. Unclear. Peet says very difficult. |
24 | Exchange of loaves and beer. |
25 | Solve the equation . Elementary and clear. |
Other mathematical texts from Ancient Egypt include:
General papyri:
For the 2/n tables see:
Geometry arose as the field of knowledge dealing with spatial relationships. Geometry was one of the two fields of pre-modern mathematics, the other being the study of numbers (arithmetic).
In geometry, a frustum ; is the portion of a solid that lies between two parallel planes cutting the solid. In the case of a pyramid, the base faces are polygonal and the side faces are trapezoidal. A right frustum is a right pyramid or a right cone truncated perpendicularly to its axis; otherwise, it is an oblique frustum. In a truncated cone or truncated pyramid, the truncation plane is not necessarily parallel to the cone's base, as in a frustum. If all its edges are forced to become of the same length, then a frustum becomes a prism.
In geometry, an isosceles triangle is a triangle that has two sides of equal length. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case. Examples of isosceles triangles include the isosceles right triangle, the golden triangle, and the faces of bipyramids and certain Catalan solids.
An Egyptian fraction is a finite sum of distinct unit fractions, such as That is, each fraction in the expression has a numerator equal to 1 and a denominator that is a positive integer, and all the denominators differ from each other. The value of an expression of this type is a positive rational number ; for instance the Egyptian fraction above sums to . Every positive rational number can be represented by an Egyptian fraction. Sums of this type, and similar sums also including and as summands, were used as a serious notation for rational numbers by the ancient Egyptians, and continued to be used by other civilizations into medieval times. In modern mathematical notation, Egyptian fractions have been superseded by vulgar fractions and decimal notation. However, Egyptian fractions continue to be an object of study in modern number theory and recreational mathematics, as well as in modern historical studies of ancient mathematics.
In geometry, a square pyramid is a pyramid with a square base, having a total of five faces. If the apex of the pyramid is directly above the center of the square, it is a right square pyramid with four isosceles triangles; otherwise, it is an oblique square pyramid. When all of the pyramid's edges are equal in length, its triangles are all equilateral. It is called an equilateral square pyramid, an example of a Johnson solid.
Ancient Egyptian mathematics is the mathematics that was developed and used in Ancient Egypt c. 3000 to c. 300 BCE, from the Old Kingdom of Egypt until roughly the beginning of Hellenistic Egypt. The ancient Egyptians utilized a numeral system for counting and solving written mathematical problems, often involving multiplication and fractions. Evidence for Egyptian mathematics is limited to a scarce amount of surviving sources written on papyrus. From these texts it is known that ancient Egyptians understood concepts of geometry, such as determining the surface area and volume of three-dimensional shapes useful for architectural engineering, and algebra, such as the false position method and quadratic equations.
In geometry, a pyramid is a polyhedron formed by connecting a polygonal base and a point, called the apex. Each base edge and apex form a triangle, called a lateral face. A pyramid is a conic solid with a polygonal base. Many types of pyramids can be found by determining the shape of bases, either by based on a regular polygon or by cutting off the apex. It can be generalized into higher dimensions, known as hyperpyramid. All pyramids are self-dual.
In mathematics, ancient Egyptian multiplication, one of two multiplication methods used by scribes, is a systematic method for multiplying two numbers that does not require the multiplication table, only the ability to multiply and divide by 2, and to add. It decomposes one of the multiplicands into a set of numbers of powers of two and then creates a table of doublings of the second multiplicand by every value of the set which is summed up to give result of multiplication.
In mathematics, the Heronian meanH of two non-negative real numbers A and B is given by the formula
The Egyptian Mathematical Leather Roll (EMLR) is a 10 × 17 in (25 × 43 cm) leather roll purchased by Alexander Henry Rhind in 1858. It was sent to the British Museum in 1864, along with the Rhind Mathematical Papyrus, but it was not chemically softened and unrolled until 1927 (Scott, Hall 1927).
The Reisner Papyri date to the reign of Senusret I, who was king of ancient Egypt in the 19th century BCE. The documents were discovered by G.A. Reisner during excavations in 1901–04 in Naga ed-Deir in southern Egypt. A total of four papyrus rolls were found in a wooden coffin in a tomb.
The Rhind Mathematical Papyrus is one of the best known examples of ancient Egyptian mathematics.
The Rhind Mathematical Papyrus, an ancient Egyptian mathematical work, includes a mathematical table for converting rational numbers of the form 2/n into Egyptian fractions, the form the Egyptians used to write fractional numbers. The text describes the representation of 50 rational numbers. It was written during the Second Intermediate Period of Egypt by Ahmes, the first writer of mathematics whose name is known. Aspects of the document may have been copied from an unknown 1850 BCE text.
The following is a timeline of key developments of geometry:
Seked is an ancient Egyptian term describing the inclination of the triangular faces of a right pyramid. The system was based on the Egyptians' length measure known as the royal cubit. It was subdivided into seven palms, each of which was sub-divided into four digits.
The Lahun Mathematical Papyri is an ancient Egyptian mathematical text. It forms part of the Kahun Papyri, which was discovered at El-Lahun by Flinders Petrie during excavations of a workers' town near the pyramid of the Twelfth Dynasty pharaoh Sesostris II. The Kahun Papyri are a collection of texts including administrative texts, medical texts, veterinarian texts and six fragments devoted to mathematics.
Egyptian geometry refers to geometry as it was developed and used in Ancient Egypt. Their geometry was a necessary outgrowth of surveying to preserve the layout and ownership of farmland, which was flooded annually by the Nile river.
In the history of mathematics, Egyptian algebra, as that term is used in this article, refers to algebra as it was developed and used in ancient Egypt. Ancient Egyptian mathematics as discussed here spans a time period ranging from c. 3000 BCE to c. 300 BCE.
Mathematics in Ancient Egypt: A Contextual History is a book on ancient Egyptian mathematics by Annette Imhausen. It was published by the Princeton University Press in 2016.
While it has been generally accepted that the Egyptians were well acquainted with the formula for the volume of the complete square pyramid, it has not been easy to establish how they were able to deduce the formula for the truncated pyramid, with the mathematics at their disposal, in its most elegant and far from obvious form.