Complex polytope

Last updated

In geometry, a complex polytope is a generalization of a polytope in real space to an analogous structure in a complex Hilbert space, where each real dimension is accompanied by an imaginary one.

Contents

A complex polytope may be understood as a collection of complex points, lines, planes, and so on, where every point is the junction of multiple lines, every line of multiple planes, and so on.

Precise definitions exist only for the regular complex polytopes, which are configurations. The regular complex polytopes have been completely characterized, and can be described using a symbolic notation developed by Coxeter.

Some complex polytopes which are not fully regular have also been described.

Definitions and introduction

The complex line has one dimension with real coordinates and another with imaginary coordinates. Applying real coordinates to both dimensions is said to give it two dimensions over the real numbers. A real plane, with the imaginary axis labelled as such, is called an Argand diagram. Because of this it is sometimes called the complex plane. Complex 2-space (also sometimes called the complex plane) is thus a four-dimensional space over the reals, and so on in higher dimensions.

A complex n-polytope in complex n-space is the analogue of a real n-polytope in real n-space. However, there is no natural complex analogue of the ordering of points on a real line (or of the associated combinatorial properties). Because of this a complex polytope cannot be seen as a contiguous surface and it does not bound an interior in the way that a real polytope does.

In the case of regular polytopes, a precise definition can be made by using the notion of symmetry. For any regular polytope the symmetry group (here a complex reflection group, called a Shephard group) acts transitively on the flags, that is, on the nested sequences of a point contained in a line contained in a plane and so on.

More fully, say that a collection P of affine subspaces (or flats) of a complex unitary space V of dimension n is a regular complex polytope if it meets the following conditions: [1] [2]

(Here, a flat of dimension −1 is taken to mean the empty set.) Thus, by definition, regular complex polytopes are configurations in complex unitary space.

The regular complex polytopes were discovered by Shephard (1952), and the theory was further developed by Coxeter (1974).

Three views of regular complex polygon4{4}2, CDel 4node 1.pngCDel 3.pngCDel 4.pngCDel 3.pngCDel node.png
ComplexOctagon.svg

This complex polygon has 8 edges (complex lines), labeled as a..h, and 16 vertices. Four vertices lie in each edge and two edges intersect at each vertex. In the left image, the outlined squares are not elements of the polytope but are included merely to help identify vertices lying in the same complex line. The octagonal perimeter of the left image is not an element of the polytope, but it is a petrie polygon. [3] In the middle image, each edge is represented as a real line and the four vertices in each line can be more clearly seen.

Complex polygon 4-4-2-perspective-labeled.png
A perspective sketch representing the 16 vertex points as large black dots and the 8 4-edges as bounded squares within each edge. The green path represents the octagonal perimeter of the left hand image.

A complex polytope exists in the complex space of equivalent dimension. For example, the vertices of a complex polygon are points in the complex plane (a plane in which each point has two complex numbers as its coordinates, not to be confused with the Argand plane of complex numbers), and the edges are complex lines existing as (affine) subspaces of the plane and intersecting at the vertices. Thus, as a one-dimensional complex space, an edge can be given its own coordinate system, within which the points of the edge are each represented by a single complex number.

In a regular complex polytope the vertices incident on the edge are arranged symmetrically about their centroid, which is often used as the origin of the edge's coordinate system (in the real case the centroid is just the midpoint of the edge). The symmetry arises from a complex reflection about the centroid; this reflection will leave the magnitude of any vertex unchanged, but change its argument by a fixed amount, moving it to the coordinates of the next vertex in order. So we may assume (after a suitable choice of scale) that the vertices on the edge satisfy the equation where p is the number of incident vertices. Thus, in the Argand diagram of the edge, the vertex points lie at the vertices of a regular polygon centered on the origin.

Three real projections of regular complex polygon 4{4}2 are illustrated above, with edges a, b, c, d, e, f, g, h. It has 16 vertices, which for clarity have not been individually marked. Each edge has four vertices and each vertex lies on two edges, hence each edge meets four other edges. In the first diagram, each edge is represented by a square. The sides of the square are not parts of the polygon but are drawn purely to help visually relate the four vertices. The edges are laid out symmetrically. (Note that the diagram looks similar to the B4 Coxeter plane projection of the tesseract, but it is structurally different).

The middle diagram abandons octagonal symmetry in favour of clarity. Each edge is shown as a real line, and each meeting point of two lines is a vertex. The connectivity between the various edges is clear to see.

The last diagram gives a flavour of the structure projected into three dimensions: the two cubes of vertices are in fact the same size but are seen in perspective at different distances away in the fourth dimension.

Regular complex one-dimensional polytopes

Complex 1-polytopes represented in the Argand plane as regular polygons for p = 2, 3, 4, 5, and 6, with black vertices. The centroid of the p vertices is shown seen in red. The sides of the polygons represent one application of the symmetry generator, mapping each vertex to the next counterclockwise copy. These polygonal sides are not edge elements of the polytope, as a complex 1-polytope can have no edges (it often is a complex edge) and only contains vertex elements. Complex 1-topes as k-edges.png
Complex 1-polytopes represented in the Argand plane as regular polygons for p = 2, 3, 4, 5, and 6, with black vertices. The centroid of the p vertices is shown seen in red. The sides of the polygons represent one application of the symmetry generator, mapping each vertex to the next counterclockwise copy. These polygonal sides are not edge elements of the polytope, as a complex 1-polytope can have no edges (it often is a complex edge) and only contains vertex elements.

A real 1-dimensional polytope exists as a closed segment in the real line , defined by its two end points or vertices in the line. Its Schläfli symbol is {} .

Analogously, a complex 1-polytope exists as a set of p vertex points in the complex line . These may be represented as a set of points in an Argand diagram (x,y)=x+iy. A regular complex 1-dimensional polytope p{} has p (p ≥ 2) vertex points arranged to form a convex regular polygon {p} in the Argand plane. [4]

Unlike points on the real line, points on the complex line have no natural ordering. Thus, unlike real polytopes, no interior can be defined. [5] Despite this, complex 1-polytopes are often drawn, as here, as a bounded regular polygon in the Argand plane.

A real edge is generated as the line between a point and its reflective image across a mirror. A unitary reflection order 2 can be seen as a 180 degree rotation around a center. An edge is inactive if the generator point is on the reflective line or at the center. Coxeter node markup real unitary.png
A real edge is generated as the line between a point and its reflective image across a mirror. A unitary reflection order 2 can be seen as a 180 degree rotation around a center. An edge is inactive if the generator point is on the reflective line or at the center.

A regular real 1-dimensional polytope is represented by an empty Schläfli symbol {}, or Coxeter-Dynkin diagram CDel node 1.png. The dot or node of the Coxeter-Dynkin diagram itself represents a reflection generator while the circle around the node means the generator point is not on the reflection, so its reflective image is a distinct point from itself. By extension, a regular complex 1-dimensional polytope in has Coxeter-Dynkin diagram CDel pnode 1.png, for any positive integer p, 2 or greater, containing p vertices. p can be suppressed if it is 2. It can also be represented by an empty Schläfli symbol p{}, }p{, {}p, or p{2}1. The 1 is a notational placeholder, representing a nonexistent reflection, or a period 1 identity generator. (A 0-polytope, real or complex is a point, and is represented as } {, or 1{2}1.)

The symmetry is denoted by the Coxeter diagram CDel pnode.png, and can alternatively be described in Coxeter notation as p[], []p or ]p[, p[2]1 or p[1]p. The symmetry is isomorphic to the cyclic group, order p. [6] The subgroups of p[] are any whole divisor d, d[], where d≥2.

A unitary operator generator for CDel pnode.png is seen as a rotation by 2π/p radians counter clockwise, and a CDel pnode 1.png edge is created by sequential applications of a single unitary reflection. A unitary reflection generator for a 1-polytope with p vertices is e2πi/p = cos(2π/p) + i sin(2π/p). When p = 2, the generator is eπi = –1, the same as a point reflection in the real plane.

In higher complex polytopes, 1-polytopes form p-edges. A 2-edge is similar to an ordinary real edge, in that it contains two vertices, but need not exist on a real line.

Regular complex polygons

While 1-polytopes can have unlimited p, finite regular complex polygons, excluding the double prism polygons p{4}2, are limited to 5-edge (pentagonal edges) elements, and infinite regular apeirogons also include 6-edge (hexagonal edges) elements.

Notations

Shephard's modified Schläfli notation

Shephard originally devised a modified form of Schläfli's notation for regular polytopes. For a polygon bounded by p1-edges, with a p2-set as vertex figure and overall symmetry group of order g, we denote the polygon as p1(g)p2.

The number of vertices V is then g/p2 and the number of edges E is g/p1.

The complex polygon illustrated above has eight square edges (p1=4) and sixteen vertices (p2=2). From this we can work out that g = 32, giving the modified Schläfli symbol 4(32)2.

Coxeter's revised modified Schläfli notation

A more modern notation p1{q}p2 is due to Coxeter, [7] and is based on group theory. As a symmetry group, its symbol is p1[q]p2.

The symmetry group p1[q]p2 is represented by 2 generators R1, R2, where: R1p1 = R2p2 = I. If q is even, (R2R1)q/2 = (R1R2)q/2. If q is odd, (R2R1)(q−1)/2R2 = (R1R2)(q−1)/2R1. When q is odd, p1=p2.

For 4[4]2 has R14 = R22 = I, (R2R1)2 = (R1R2)2.

For 3[5]3 has R13 = R23 = I, (R2R1)2R2 = (R1R2)2R1.

Coxeter-Dynkin diagrams

Coxeter also generalised the use of Coxeter-Dynkin diagrams to complex polytopes, for example the complex polygon p{q}r is represented by CDel pnode 1.pngCDel q.pngCDel rnode.png and the equivalent symmetry group, p[q]r, is a ringless diagram CDel pnode.pngCDel q.pngCDel rnode.png. The nodes p and r represent mirrors producing p and r images in the plane. Unlabeled nodes in a diagram have implicit 2 labels. For example, a real regular polygon is 2{q}2 or {q} or CDel node 1.pngCDel q.pngCDel node.png.

One limitation, nodes connected by odd branch orders must have identical node orders. If they do not, the group will create "starry" polygons, with overlapping element. So CDel 3node 1.pngCDel 4.pngCDel node.png and CDel 3node 1.pngCDel 3.pngCDel 3node.png are ordinary, while CDel 4node 1.pngCDel 3.pngCDel node.png is starry.

12 Irreducible Shephard groups

12 irreducible Shephard groups with their subgroup index relations. Subgroups index 2 relate by removing a real reflection:
p[2q]2 - p[q]p, index 2.
p[4]q - p[q]p, index q. Rank2 shephard subgroups.png
12 irreducible Shephard groups with their subgroup index relations. Subgroups index 2 relate by removing a real reflection:
p[2q]2p[q]p, index 2.
p[4]qp[q]p, index q.
p[4]2 subgroups: p=2,3,4...
p[4]2 - [p], index p
p[4]2 - p[]xp[], index 2 Rank2 shephard subgroups2 series.png
p[4]2 subgroups: p=2,3,4...
p[4]2 → [p], index p
p[4]2p[]×p[], index 2

Coxeter enumerated this list of regular complex polygons in . A regular complex polygon, p{q}r or CDel pnode 1.pngCDel q.pngCDel rnode.png, has p-edges, and r-gonal vertex figures. p{q}r is a finite polytope if (p+r)q>pr(q-2).

Its symmetry is written as p[q]r, called a Shephard group , analogous to a Coxeter group, while also allowing unitary reflections.

For nonstarry groups, the order of the group p[q]r can be computed as . [9]

The Coxeter number for p[q]r is , so the group order can also be computed as . A regular complex polygon can be drawn in orthogonal projection with h-gonal symmetry.

The rank 2 solutions that generate complex polygons are:

GroupG3=G(q,1,1)G2=G(p,1,2)G4G6G5G8G14G9G10G20G16G21G17G18
2[q]2, q=3,4...p[4]2, p=2,3...3[3]33[6]23[4]34[3]43[8]24[6]24[4]33[5]35[3]53[10]25[6]25[4]3
CDel node.pngCDel q.pngCDel node.pngCDel pnode.pngCDel 4.pngCDel node.pngCDel 3node.pngCDel 3.pngCDel 3node.pngCDel 3node.pngCDel 6.pngCDel node.pngCDel 3node.pngCDel 4.pngCDel 3node.pngCDel 4node.pngCDel 3.pngCDel 4node.pngCDel 3node.pngCDel 8.pngCDel node.pngCDel 4node.pngCDel 6.pngCDel node.pngCDel 4node.pngCDel 4.pngCDel 3node.pngCDel 3node.pngCDel 5.pngCDel 3node.pngCDel 5node.pngCDel 3.pngCDel 5node.pngCDel 3node.pngCDel 10.pngCDel node.pngCDel 5node.pngCDel 6.pngCDel node.pngCDel 5node.pngCDel 4.pngCDel 3node.png
Order2q2p22448729614419228836060072012001800
h q2p612243060

Excluded solutions with odd q and unequal p and r are: 6[3]2, 6[3]3, 9[3]3, 12[3]3, ..., 5[5]2, 6[5]2, 8[5]2, 9[5]2, 4[7]2, 9[5]2, 3[9]2, and 3[11]2.

Other whole q with unequal p and r, create starry groups with overlapping fundamental domains: CDel 3node.pngCDel 3.pngCDel node.png, CDel 4node.pngCDel 3.pngCDel node.png, CDel 5node.pngCDel 3.pngCDel node.png, CDel 5node.pngCDel 3.pngCDel 3node.png, CDel 3node.pngCDel 5.pngCDel node.png, and CDel 5node.pngCDel 5.pngCDel node.png.

The dual polygon of p{q}r is r{q}p. A polygon of the form p{q}p is self-dual. Groups of the form p[2q]2 have a half symmetry p[q]p, so a regular polygon CDel pnode 1.pngCDel 3.pngCDel 2x.pngCDel q.pngCDel 3.pngCDel node.png is the same as quasiregular CDel pnode 1.pngCDel 3.pngCDel q.pngCDel 3.pngCDel pnode 1.png. As well, regular polygon with the same node orders, CDel pnode 1.pngCDel 3.pngCDel q.pngCDel 3.pngCDel pnode.png, have an alternated construction CDel node h.pngCDel 3.pngCDel 2x.pngCDel q.pngCDel 3.pngCDel pnode.png, allowing adjacent edges to be two different colors. [10]

The group order, g, is used to compute the total number of vertices and edges. It will have g/r vertices, and g/p edges. When p=r, the number of vertices and edges are equal. This condition is required when q is odd.

Matrix generators

The group p[q]r, CDel pnode.pngCDel q.pngCDel rnode.png, can be represented by two matrices: [11]

CDel pnode.pngCDel q.pngCDel rnode.png
NameR1
CDel pnode.png
R2
CDel rnode.png
Orderpr
Matrix

With

k=
Examples
CDel pnode.pngCDel 2.pngCDel qnode.png
NameR1
CDel pnode.png
R2
CDel qnode.png
Orderpq
Matrix

CDel pnode.pngCDel 4.pngCDel node.png
NameR1
CDel pnode.png
R2
CDel node.png
Orderp2
Matrix

CDel 3node.pngCDel 3.pngCDel 3node.png
NameR1
CDel 3node.png
R2
CDel 3node.png
Order33
Matrix

CDel 4node.pngCDel 2.pngCDel 4node.png
NameR1
CDel 4node.png
R2
CDel 4node.png
Order44
Matrix

CDel 4node.pngCDel 4.pngCDel node.png
NameR1
CDel 4node.png
R2
CDel node.png
Order42
Matrix

CDel 3node.pngCDel 6.pngCDel node.png
NameR1
CDel 3node.png
R2
CDel node.png
Order32
Matrix

Enumeration of regular complex polygons

Coxeter enumerated the complex polygons in Table III of Regular Complex Polytopes. [12]

Group OrderCoxeter
number
PolygonVerticesEdgesNotes
G(q,q,2)
2[q]2 = [q]
q=2,3,4,...
2qq2{q}2CDel node 1.pngCDel q.pngCDel node.pngqq{}Real regular polygons
Same as CDel node h.pngCDel 2x.pngCDel q.pngCDel node.png
Same as CDel node 1.pngCDel q.pngCDel rat.pngCDel 2x.pngCDel node 1.png if q even
Group OrderCoxeter
number
PolygonVerticesEdgesNotes
G(p,1,2)
p[4]2
p=2,3,4,...
2p22pp(2p2)2p{4}2         
CDel pnode 1.pngCDel 4.pngCDel node.png
p22pp{}same as p{}×p{} or CDel pnode 1.pngCDel 2.pngCDel pnode 1.png
representation as p-p duoprism
2(2p2)p2{4}pCDel node 1.pngCDel 4.pngCDel pnode.png2pp2{} representation as p-p duopyramid
G(2,1,2)
2[4]2 = [4]
842{4}2 = {4}CDel node 1.pngCDel 4.pngCDel node.png44{}same as {}×{} or CDel node 1.pngCDel 2.pngCDel node 1.png
Real square
G(3,1,2)
3[4]2
1866(18)23{4}2CDel 3node 1.pngCDel 4.pngCDel node.png963{}same as 3{}×3{} or CDel 3node 1.pngCDel 2.pngCDel 3node 1.png
representation as 3-3 duoprism
2(18)32{4}3CDel node 1.pngCDel 4.pngCDel 3node.png69{} representation as 3-3 duopyramid
G(4,1,2)
4[4]2
3288(32)24{4}2CDel 4node 1.pngCDel 4.pngCDel node.png1684{}same as 4{}×4{} or CDel 4node 1.pngCDel 2.pngCDel 4node 1.png
representation as 4-4 duoprism or {4,3,3}
2(32)42{4}4CDel node 1.pngCDel 4.pngCDel 4node.png816{} representation as 4-4 duopyramid or {3,3,4}
G(5,1,2)
5[4]2
50255(50)25{4}2CDel 5node 1.pngCDel 4.pngCDel node.png25105{}same as 5{}×5{} or CDel 5node 1.pngCDel 2.pngCDel 5node 1.png
representation as 5-5 duoprism
2(50)52{4}5CDel node 1.pngCDel 4.pngCDel 5node.png1025{} representation as 5-5 duopyramid
G(6,1,2)
6[4]2
72366(72)26{4}2CDel 6node 1.pngCDel 4.pngCDel node.png36126{}same as 6{}×6{} or CDel 6node 1.pngCDel 2.pngCDel 6node 1.png
representation as 6-6 duoprism
2(72)62{4}6CDel node 1.pngCDel 4.pngCDel 6node.png1236{} representation as 6-6 duopyramid
G4=G(1,1,2)
3[3]3
<2,3,3>
2463(24)3 3{3}3 CDel 3node 1.pngCDel 3.pngCDel 3node.png883{} Möbius–Kantor configuration
self-dual, same as CDel node h.pngCDel 6.pngCDel 3node.png
representation as {3,3,4}
G6
3[6]2
48123(48)23{6}2CDel 3node 1.pngCDel 6.pngCDel node.png24163{}same as CDel 3node 1.pngCDel 3.pngCDel 3node 1.png
3{3}2CDel 3node 1.pngCDel 3.pngCDel node.pngstarry polygon
2(48)32{6}3CDel node 1.pngCDel 6.pngCDel 3node.png1624{}
2{3}3CDel node 1.pngCDel 3.pngCDel 3node.pngstarry polygon
G5
3[4]3
72123(72)33{4}3CDel 3node 1.pngCDel 4.pngCDel 3node.png24243{}self-dual, same as CDel node h.pngCDel 8.pngCDel 3node.png
representation as {3,4,3}
G8
4[3]4
96124(96)44{3}4CDel 4node 1.pngCDel 3.pngCDel 4node.png24244{}self-dual, same as CDel node h.pngCDel 6.pngCDel 4node.png
representation as {3,4,3}
G14
3[8]2
144243(144)23{8}2CDel 3node 1.pngCDel 8.pngCDel node.png72483{}same as CDel 3node 1.pngCDel 4.pngCDel 3node 1.png
3{8/3}2CDel 3node 1.pngCDel 8.pngCDel rat.pngCDel 3x.pngCDel node.pngstarry polygon, same as CDel 3node 1.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel 3node 1.png
2(144)32{8}3CDel node 1.pngCDel 8.pngCDel 3node.png4872{}
2{8/3}3CDel node 1.pngCDel 8.pngCDel rat.pngCDel 3x.pngCDel 3node.pngstarry polygon
G9
4[6]2
192244(192)24{6}2CDel 4node 1.pngCDel 6.pngCDel node.png96484{}same as CDel 4node 1.pngCDel 3.pngCDel 4node 1.png
2(192)42{6}4CDel node 1.pngCDel 6.pngCDel 4node.png4896{}
4{3}2CDel 4node 1.pngCDel 3.pngCDel node.png9648{}starry polygon
2{3}4CDel node 1.pngCDel 3.pngCDel 4node.png4896{}starry polygon
G10
4[4]3
288244(288)34{4}3CDel 4node 1.pngCDel 4.pngCDel 3node.png96724{}
124{8/3}3CDel 4node 1.pngCDel 8.pngCDel rat.pngCDel 3x.pngCDel 3node.pngstarry polygon
243(288)43{4}4CDel 3node 1.pngCDel 4.pngCDel 4node.png72963{}
123{8/3}4CDel 3node 1.pngCDel 8.pngCDel rat.pngCDel 3x.pngCDel 4node.pngstarry polygon
G20
3[5]3
360303(360)33{5}3CDel 3node 1.pngCDel 5.pngCDel 3node.png1201203{}self-dual, same as CDel node h.pngCDel 10.pngCDel 3node.png
representation as {3,3,5}
3{5/2}3CDel 3node 1.pngCDel 5-2.pngCDel 3node.pngself-dual, starry polygon
G16
5[3]5
600305(600)55{3}5CDel 5node 1.pngCDel 3.pngCDel 5node.png1201205{}self-dual, same as CDel node h.pngCDel 6.pngCDel 5node.png
representation as {3,3,5}
105{5/2}5CDel 5node 1.pngCDel 5-2.pngCDel 5node.pngself-dual, starry polygon
G21
3[10]2
720603(720)23{10}2CDel 3node 1.pngCDel 10.pngCDel node.png3602403{}same as CDel 3node 1.pngCDel 5.pngCDel 3node 1.png
3{5}2CDel 3node 1.pngCDel 5.pngCDel node.pngstarry polygon
3{10/3}2CDel 3node 1.pngCDel 10.pngCDel rat.pngCDel 3x.pngCDel node.pngstarry polygon, same as CDel 3node 1.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel 3node 1.png
3{5/2}2CDel 3node 1.pngCDel 5-2.pngCDel node.pngstarry polygon
2(720)32{10}3CDel node 1.pngCDel 10.pngCDel 3node.png240360{}
2{5}3CDel node 1.pngCDel 5.pngCDel 3node.pngstarry polygon
2{10/3}3CDel node 1.pngCDel 10.pngCDel rat.pngCDel 3x.pngCDel 3node.pngstarry polygon
2{5/2}3CDel node 1.pngCDel 5-2.pngCDel 3node.pngstarry polygon
G17
5[6]2
1200605(1200)25{6}2CDel 5node 1.pngCDel 6.pngCDel node.png6002405{}same as CDel 5node 1.pngCDel 3.pngCDel 5node 1.png
205{5}2CDel 5node 1.pngCDel 5.pngCDel node.pngstarry polygon
205{10/3}2CDel 5node 1.pngCDel 10.pngCDel rat.pngCDel 3x.pngCDel node.pngstarry polygon
605{3}2CDel 5node 1.pngCDel 3.pngCDel node.pngstarry polygon
602(1200)52{6}5CDel node 1.pngCDel 6.pngCDel 5node.png240600{}
202{5}5CDel node 1.pngCDel 5.pngCDel 5node.pngstarry polygon
202{10/3}5CDel node 1.pngCDel 10.pngCDel rat.pngCDel 3x.pngCDel 5node.pngstarry polygon
602{3}5CDel node 1.pngCDel 3.pngCDel 5node.pngstarry polygon
G18
5[4]3
1800605(1800)35{4}3CDel 5node 1.pngCDel 4.pngCDel 3node.png6003605{}
155{10/3}3CDel 5node 1.pngCDel 10.pngCDel rat.pngCDel 3x.pngCDel 3node.pngstarry polygon
305{3}3CDel 5node 1.pngCDel 3.pngCDel 3node.pngstarry polygon
305{5/2}3CDel 5node 1.pngCDel 5-2.pngCDel 3node.pngstarry polygon
603(1800)53{4}5CDel 3node 1.pngCDel 4.pngCDel 5node.png3606003{}
153{10/3}5CDel 3node 1.pngCDel 10.pngCDel rat.pngCDel 3x.pngCDel 5node.pngstarry polygon
303{3}5CDel 3node 1.pngCDel 3.pngCDel 5node.pngstarry polygon
303{5/2}5CDel 3node 1.pngCDel 5-2.pngCDel 5node.pngstarry polygon

Visualizations of regular complex polygons

Polygons of the form p{2r}q can be visualized by q color sets of p-edge. Each p-edge is seen as a regular polygon, while there are no faces.

2D orthogonal projections of complex polygons 2{r}q

Polygons of the form 2{4}q are called generalized orthoplexes. They share vertices with the 4D q-q duopyramids, vertices connected by 2-edges.

Complex polygons p{4}2

Polygons of the form p{4}2 are called generalized hypercubes (squares for polygons). They share vertices with the 4D p-p duoprisms, vertices connected by p-edges. Vertices are drawn in green, and p-edges are drawn in alternate colors, red and blue. The perspective is distorted slightly for odd dimensions to move overlapping vertices from the center.

3D perspective projections of complex polygons p{4}2. The duals 2{4}p
are seen by adding vertices inside the edges, and adding edges in place of vertices.
Other Complex polygons p{r}2
2D orthogonal projections of complex polygons, p{r}p

Polygons of the form p{r}p have equal number of vertices and edges. They are also self-dual.

Regular complex polytopes

In general, a regular complex polytope is represented by Coxeter as p{z1}q{z2}r{z3}s... or Coxeter diagram CDel pnode 1.pngCDel 3.pngCDel z.pngCDel 1x.pngCDel 3.pngCDel qnode.pngCDel 3.pngCDel z.pngCDel 2x.pngCDel 3.pngCDel rnode.pngCDel 3.pngCDel z.pngCDel 3x.pngCDel 3.pngCDel snode.png..., having symmetry p[z1]q[z2]r[z3]s... or CDel pnode.pngCDel 3.pngCDel z.pngCDel 1x.pngCDel 3.pngCDel qnode.pngCDel 3.pngCDel z.pngCDel 2x.pngCDel 3.pngCDel rnode.pngCDel 3.pngCDel z.pngCDel 3x.pngCDel 3.pngCDel snode.png.... [20]

There are infinite families of regular complex polytopes that occur in all dimensions, generalizing the hypercubes and cross polytopes in real space. Shephard's "generalized orthotope" generalizes the hypercube; it has symbol given by γp
n
= p{4}2{3}2...2{3}2 and diagram CDel pnode 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.png...CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png. Its symmetry group has diagram p[4]2[3]2...2[3]2; in the Shephard–Todd classification, this is the group G(p, 1, n) generalizing the signed permutation matrices. Its dual regular polytope, the "generalized cross polytope", is represented by the symbol βp
n
= 2{3}2{3}2...2{4}p and diagram CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.png...CDel 3.pngCDel node.pngCDel 4.pngCDel pnode.png. [21]

A 1-dimensional regular complex polytope in is represented as CDel pnode 1.png, having p vertices, with its real representation a regular polygon, {p}. Coxeter also gives it symbol γp
1
or βp
1
as 1-dimensional generalized hypercube or cross polytope. Its symmetry is p[] or CDel pnode.png, a cyclic group of order p. In a higher polytope, p{} or CDel pnode 1.png represents a p-edge element, with a 2-edge, {} or CDel node 1.png, representing an ordinary real edge between two vertices. [21]

A dual complex polytope is constructed by exchanging k and (n-1-k)-elements of an n-polytope. For example, a dual complex polygon has vertices centered on each edge, and new edges are centered at the old vertices. A v-valence vertex creates a new v-edge, and e-edges become e-valence vertices. [22] The dual of a regular complex polytope has a reversed symbol. Regular complex polytopes with symmetric symbols, i.e. p{q}p, p{q}r{q}p, p{q}r{s}r{q}p, etc. are self dual.

Enumeration of regular complex polyhedra

Some rank 3 Shephard groups with their group orders, and the reflective subgroup relations Rank3 shephard subgroups.png
Some rank 3 Shephard groups with their group orders, and the reflective subgroup relations

Coxeter enumerated this list of nonstarry regular complex polyhedra in , including the 5 platonic solids in . [23]

A regular complex polyhedron, p{n1}q{n2}r or CDel pnode 1.pngCDel 3.pngCDel n.pngCDel 1x.pngCDel 3.pngCDel qnode.pngCDel 3.pngCDel n.pngCDel 2x.pngCDel 3.pngCDel rnode.png, has CDel pnode 1.pngCDel 3.pngCDel n.pngCDel 1x.pngCDel 3.pngCDel qnode.png faces, CDel pnode 1.png edges, and CDel qnode 1.pngCDel 3.pngCDel n.pngCDel 2x.pngCDel 3.pngCDel rnode.png vertex figures.

A complex regular polyhedron p{n1}q{n2}r requires both g1 = order(p[n1]q) and g2 = order(q[n2]r) be finite.

Given g = order(p[n1]q[n2]r), the number of vertices is g/g2, and the number of faces is g/g1. The number of edges is g/pr.

Space Group Order Coxeter number PolygonVerticesEdgesFacesVertex
figure
Van Oss
polygon
Notes
G(1,1,3)
2[3]2[3]2
= [3,3]
244α3 = 2{3}2{3}2
= {3,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png46{}4{3}{3}noneReal tetrahedron
Same as CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
G23
2[3]2[5]2
= [3,5]
120102{3}2{5}2 = {3,5}CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png1230{}20{3}{5}noneReal icosahedron
2{5}2{3}2 = {5,3}CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png2030{}12{5}{3}noneReal dodecahedron
G(2,1,3)
2[3]2[4]2
= [3,4]
486β2
3
= β3 = {3,4}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png612{}8{3}{4}{4}Real octahedron
Same as {}+{}+{}, order 8
Same as CDel node 1.pngCDel split1.pngCDel nodes.png, order 24
γ2
3
= γ3 = {4,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png812{}6{4}{3}noneReal cube
Same as {}×{}×{} or CDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 2c.pngCDel node 1.png
G(p,1,3)
2[3]2[4]p
p=2,3,4,...
6p33pβp
3
= 2{3}2{4}p
          
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel pnode.png
3p3p2{}p3{3}2{4}p2{4}pGeneralized octahedron
Same as p{}+p{}+p{}, order p3
Same as CDel node 1.pngCDel 3split1.pngCDel branch.pngCDel labelp.png, order 6p2
γp
3
= p{4}2{3}2
CDel pnode 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngp33p2p{}3pp{4}2{3}noneGeneralized cube
Same as p{}×p{}×p{} or CDel pnode 1.pngCDel 2c.pngCDel pnode 1.pngCDel 2c.pngCDel pnode 1.png
G(3,1,3)
2[3]2[4]3
1629β3
3
= 2{3}2{4}3
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 3node.png927{}27{3}2{4}32{4}3Same as 3{}+3{}+3{}, order 27
Same as CDel node 1.pngCDel 3split1.pngCDel branch.png, order 54
γ3
3
= 3{4}2{3}2
CDel 3node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png27273{}93{4}2{3}noneSame as 3{}×3{}×3{} or CDel 3node 1.pngCDel 2c.pngCDel 3node 1.pngCDel 2c.pngCDel 3node 1.png
G(4,1,3)
2[3]2[4]4
38412β4
3
= 2{3}2{4}4
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 4node.png1248{}64{3}2{4}42{4}4Same as 4{}+4{}+4{}, order 64
Same as CDel node 1.pngCDel 3split1.pngCDel branch.pngCDel label4.png, order 96
γ4
3
= 4{4}2{3}2
CDel 4node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png64484{}124{4}2{3}noneSame as 4{}×4{}×4{} or CDel 4node 1.pngCDel 2c.pngCDel 4node 1.pngCDel 2c.pngCDel 4node 1.png
G(5,1,3)
2[3]2[4]5
75015β5
3
= 2{3}2{4}5
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 5node.png1575{}125{3}2{4}52{4}5Same as 5{}+5{}+5{}, order 125
Same as CDel node 1.pngCDel 3split1.pngCDel branch.pngCDel label5.png, order 150
γ5
3
= 5{4}2{3}2
CDel 5node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png125755{}155{4}2{3}noneSame as 5{}×5{}×5{} or CDel 5node 1.pngCDel 2c.pngCDel 5node 1.pngCDel 2c.pngCDel 5node 1.png
G(6,1,3)
2[3]2[4]6
129618β6
3
= 2{3}2{4}6
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 6node.png36108{}216{3}2{4}62{4}6Same as 6{}+6{}+6{}, order 216
Same as CDel node 1.pngCDel 3split1.pngCDel branch.pngCDel label6.png, order 216
γ6
3
= 6{4}2{3}2
CDel 6node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png2161086{}186{4}2{3}noneSame as 6{}×6{}×6{} or CDel 6node 1.pngCDel 2c.pngCDel 6node 1.pngCDel 2c.pngCDel 6node 1.png
G25
3[3]3[3]3
64893{3}3{3}3CDel 3node 1.pngCDel 3.pngCDel 3node.pngCDel 3.pngCDel 3node.png27723{}273{3}33{3}33{4}2Same as CDel node h.pngCDel 4.pngCDel 3node.pngCDel 3.pngCDel 3node.png.
representation as 221
Hessian polyhedron
G26
2[4]3[3]3
1296182{4}3{3}3CDel node 1.pngCDel 4.pngCDel 3node.pngCDel 3.pngCDel 3node.png54216{}722{4}33{3}3{6}
3{3}3{4}2CDel 3node 1.pngCDel 3.pngCDel 3node.pngCDel 4.pngCDel node.png722163{}543{3}33{4}23{4}3Same as CDel 3node.pngCDel 3.pngCDel 3node 1.pngCDel 3.pngCDel 3node.png [24]
representation as 122

Visualizations of regular complex polyhedra

2D orthogonal projections of complex polyhedra, p{s}t{r}r
Generalized octahedra

Generalized octahedra have a regular construction as CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel pnode.png and quasiregular form as CDel node 1.pngCDel 3split1.pngCDel branch.pngCDel labelp.png. All elements are simplexes.

Generalized cubes

Generalized cubes have a regular construction as CDel pnode 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png and prismatic construction as CDel pnode 1.pngCDel 2c.pngCDel pnode 1.pngCDel 2c.pngCDel pnode 1.png, a product of three p-gonal 1-polytopes. Elements are lower dimensional generalized cubes.

Enumeration of regular complex 4-polytopes

Coxeter enumerated this list of nonstarry regular complex 4-polytopes in , including the 6 convex regular 4-polytopes in . [23]

Space Group Order Coxeter
number
PolytopeVerticesEdgesFacesCells Van Oss
polygon
Notes
G(1,1,4)
2[3]2[3]2[3]2
= [3,3,3]
1205α4 = 2{3}2{3}2{3}2
= {3,3,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
510
{}
10
{3}
5
{3,3}
noneReal 5-cell (simplex)
G28
2[3]2[4]2[3]2
= [3,4,3]
1152122{3}2{4}2{3}2 = {3,4,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
2496
{}
96
{3}
24
{3,4}
{6}Real 24-cell
G30
2[3]2[3]2[5]2
= [3,3,5]
14400302{3}2{3}2{5}2 = {3,3,5}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
120720
{}
1200
{3}
600
{3,3}
{10}Real 600-cell
2{5}2{3}2{3}2 = {5,3,3}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6001200
{}
720
{5}
120
{5,3}
Real 120-cell
G(2,1,4)
2[3]2[3]2[4]p
=[3,3,4]
3848β2
4
= β4 = {3,3,4}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
824
{}
32
{3}
16
{3,3}
{4}Real 16-cell
Same as CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png, order 192
γ2
4
= γ4 = {4,3,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
1632
{}
24
{4}
8
{4,3}
noneReal tesseract
Same as {}4 or CDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 2c.pngCDel node 1.png, order 16
G(p,1,4)
2[3]2[3]2[4]p
p=2,3,4,...
24p44pβp
4
= 2{3}2{3}2{4}p
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel pnode.png
4p6p2
{}
4p3
{3}
p4
{3,3}
2{4}pGeneralized 4-orthoplex
Same as CDel node 1.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch.pngCDel labelp.png, order 24p3
γp
4
= p{4}2{3}2{3}2
CDel pnode 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
p44p3
p{}
6p2
p{4}2
4p
p{4}2{3}2
noneGeneralized tesseract
Same as p{}4 or CDel pnode 1.pngCDel 2c.pngCDel pnode 1.pngCDel 2c.pngCDel pnode 1.pngCDel 2c.pngCDel pnode 1.png, order p4
G(3,1,4)
2[3]2[3]2[4]3
194412β3
4
= 2{3}2{3}2{4}3
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 3node.png
1254
{}
108
{3}
81
{3,3}
2{4}3Generalized 4-orthoplex
Same as CDel node 1.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch.png, order 648
γ3
4
= 3{4}2{3}2{3}2
CDel 3node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
81108
3{}
54
3{4}2
12
3{4}2{3}2
noneSame as 3{}4 or CDel 3node 1.pngCDel 2c.pngCDel 3node 1.pngCDel 2c.pngCDel 3node 1.pngCDel 2c.pngCDel 3node 1.png, order 81
G(4,1,4)
2[3]2[3]2[4]4
614416β4
4
= 2{3}2{3}2{4}4
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 4node.png
1696
{}
256
{3}
64
{3,3}
2{4}4Same as CDel node 1.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch.pngCDel label4.png, order 1536
γ4
4
= 4{4}2{3}2{3}2
CDel 4node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
256256
4{}
96
4{4}2
16
4{4}2{3}2
noneSame as 4{}4 or CDel 4node 1.pngCDel 2c.pngCDel 4node 1.pngCDel 2c.pngCDel 4node 1.pngCDel 2c.pngCDel 4node 1.png, order 256
G(5,1,4)
2[3]2[3]2[4]5
1500020β5
4
= 2{3}2{3}2{4}5
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 5node.png
20150
{}
500
{3}
625
{3,3}
2{4}5Same as CDel node 1.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch.pngCDel label5.png, order 3000
γ5
4
= 5{4}2{3}2{3}2
CDel 5node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
625500
5{}
150
5{4}2
20
5{4}2{3}2
noneSame as 5{}4 or CDel 5node 1.pngCDel 2c.pngCDel 5node 1.pngCDel 2c.pngCDel 5node 1.pngCDel 2c.pngCDel 5node 1.png, order 625
G(6,1,4)
2[3]2[3]2[4]6
3110424β6
4
= 2{3}2{3}2{4}6
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 6node.png
24216
{}
864
{3}
1296
{3,3}
2{4}6Same as CDel node 1.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch.pngCDel label6.png, order 5184
γ6
4
= 6{4}2{3}2{3}2
CDel 6node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
1296864
6{}
216
6{4}2
24
6{4}2{3}2
noneSame as 6{}4 or CDel 6node 1.pngCDel 2c.pngCDel 6node 1.pngCDel 2c.pngCDel 6node 1.pngCDel 2c.pngCDel 6node 1.png, order 1296
G32
3[3]3[3]3[3]3
155520303{3}3{3}3{3}3
CDel 3node 1.pngCDel 3.pngCDel 3node.pngCDel 3.pngCDel 3node.pngCDel 3.pngCDel 3node.png
2402160
3{}
2160
3{3}3
240
3{3}3{3}3
3{4}3 Witting polytope
representation as 421

Visualizations of regular complex 4-polytopes

Generalized 4-orthoplexes

Generalized 4-orthoplexes have a regular construction as CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel pnode.png and quasiregular form as CDel node 1.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch.pngCDel labelp.png. All elements are simplexes.

Generalized 4-cubes

Generalized tesseracts have a regular construction as CDel pnode 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png and prismatic construction as CDel pnode 1.pngCDel 2c.pngCDel pnode 1.pngCDel 2c.pngCDel pnode 1.pngCDel 2c.pngCDel pnode 1.png, a product of four p-gonal 1-polytopes. Elements are lower dimensional generalized cubes.

Enumeration of regular complex 5-polytopes

Regular complex 5-polytopes in or higher exist in three families, the real simplexes and the generalized hypercube, and orthoplex.

Space Group OrderPolytopeVerticesEdgesFacesCells4-faces Van Oss
polygon
Notes
G(1,1,5)
= [3,3,3,3]
720α5 = {3,3,3,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
615
{}
20
{3}
15
{3,3}
6
{3,3,3}
noneReal 5-simplex
G(2,1,5)
=[3,3,3,4]
3840β2
5
= β5 = {3,3,3,4}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
1040
{}
80
{3}
80
{3,3}
32
{3,3,3}
{4}Real 5-orthoplex
Same as CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png, order 1920
γ2
5
= γ5 = {4,3,3,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
3280
{}
80
{4}
40
{4,3}
10
{4,3,3}
noneReal 5-cube
Same as {}5 or CDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 2c.pngCDel node 1.png, order 32
G(p,1,5)
2[3]2[3]2[3]2[4]p
120p5βp
5
= 2{3}2{3}2{3}2{4}p
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel pnode.png
5p10p2
{}
10p3
{3}
5p4
{3,3}
p5
{3,3,3}
2{4}pGeneralized 5-orthoplex
Same as CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch.pngCDel labelp.png, order 120p4
γp
5
= p{4}2{3}2{3}2{3}2
CDel pnode 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
p55p4
p{}
10p3
p{4}2
10p2
p{4}2{3}2
5p
p{4}2{3}2{3}2
noneGeneralized 5-cube
Same as p{}5 or CDel pnode 1.pngCDel 2c.pngCDel pnode 1.pngCDel 2c.pngCDel pnode 1.pngCDel 2c.pngCDel pnode 1.pngCDel 2c.pngCDel pnode 1.png, order p5
G(3,1,5)
2[3]2[3]2[3]2[4]3
29160β3
5
= 2{3}2{3}2{3}2{4}3
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 3node.png
1590
{}
270
{3}
405
{3,3}
243
{3,3,3}
2{4}3Same as CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch.png, order 9720
γ3
5
= 3{4}2{3}2{3}2{3}2
CDel 3node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
243405
3{}
270
3{4}2
90
3{4}2{3}2
15
3{4}2{3}2{3}2
noneSame as 3{}5 or CDel 3node 1.pngCDel 2c.pngCDel 3node 1.pngCDel 2c.pngCDel 3node 1.pngCDel 2c.pngCDel 3node 1.pngCDel 2c.pngCDel 3node 1.png, order 243
G(4,1,5)
2[3]2[3]2[3]2[4]4
122880β4
5
= 2{3}2{3}2{3}2{4}4
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 4node.png
20160
{}
640
{3}
1280
{3,3}
1024
{3,3,3}
2{4}4Same as CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch.pngCDel label4.png, order 30720
γ4
5
= 4{4}2{3}2{3}2{3}2
CDel 4node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
10241280
4{}
640
4{4}2
160
4{4}2{3}2
20
4{4}2{3}2{3}2
noneSame as 4{}5 or CDel 4node 1.pngCDel 2c.pngCDel 4node 1.pngCDel 2c.pngCDel 4node 1.pngCDel 2c.pngCDel 4node 1.pngCDel 2c.pngCDel 4node 1.png, order 1024
G(5,1,5)
2[3]2[3]2[3]2[4]5
375000β5
5
= 2{3}2{3}2{3}2{5}5
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 5node.png
25250
{}
1250
{3}
3125
{3,3}
3125
{3,3,3}
2{5}5Same as CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch.pngCDel label5.png, order 75000
γ5
5
= 5{4}2{3}2{3}2{3}2
CDel 5node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
31253125
5{}
1250
5{5}2
250
5{5}2{3}2
25
5{4}2{3}2{3}2
noneSame as 5{}5 or CDel 5node 1.pngCDel 2c.pngCDel 5node 1.pngCDel 2c.pngCDel 5node 1.pngCDel 2c.pngCDel 5node 1.pngCDel 2c.pngCDel 5node 1.png, order 3125
G(6,1,5)
2[3]2[3]2[3]2[4]6
933210β6
5
= 2{3}2{3}2{3}2{4}6
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 6node.png
30360
{}
2160
{3}
6480
{3,3}
7776
{3,3,3}
2{4}6Same as CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch.pngCDel label6.png, order 155520
γ6
5
= 6{4}2{3}2{3}2{3}2
CDel 6node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
77766480
6{}
2160
6{4}2
360
6{4}2{3}2
30
6{4}2{3}2{3}2
noneSame as 6{}5 or CDel 6node 1.pngCDel 2c.pngCDel 6node 1.pngCDel 2c.pngCDel 6node 1.pngCDel 2c.pngCDel 6node 1.pngCDel 2c.pngCDel 6node 1.png, order 7776

Visualizations of regular complex 5-polytopes

Generalized 5-orthoplexes

Generalized 5-orthoplexes have a regular construction as CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel pnode.png and quasiregular form as CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch.pngCDel labelp.png. All elements are simplexes.

Generalized 5-cubes

Generalized 5-cubes have a regular construction as CDel pnode 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png and prismatic construction as CDel pnode 1.pngCDel 2c.pngCDel pnode 1.pngCDel 2c.pngCDel pnode 1.pngCDel 2c.pngCDel pnode 1.pngCDel 2c.pngCDel pnode 1.png, a product of five p-gonal 1-polytopes. Elements are lower dimensional generalized cubes.

Enumeration of regular complex 6-polytopes

Space Group OrderPolytopeVerticesEdgesFacesCells4-faces5-faces Van Oss
polygon
Notes
G(1,1,6)
= [3,3,3,3,3]
720α6 = {3,3,3,3,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
721
{}
35
{3}
35
{3,3}
21
{3,3,3}
7
{3,3,3,3}
noneReal 6-simplex
G(2,1,6)
[3,3,3,4]
46080β2
6
= β6 = {3,3,3,4}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
1260
{}
160
{3}
240
{3,3}
192
{3,3,3}
64
{3,3,3,3}
{4}Real 6-orthoplex
Same as CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png, order 23040
γ2
6
= γ6 = {4,3,3,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
64192
{}
240
{4}
160
{4,3}
60
{4,3,3}
12
{4,3,3,3}
noneReal 6-cube
Same as {}6 or CDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 2c.pngCDel node 1.pngCDel 2c.pngCDel node 1.png, order 64
G(p,1,6)
2[3]2[3]2[3]2[4]p
720p6βp
6
= 2{3}2{3}2{3}2{4}p
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel pnode.png
6p15p2
{}
20p3
{3}
15p4
{3,3}
6p5
{3,3,3}
p6
{3,3,3,3}
2{4}pGeneralized 6-orthoplex
Same as CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch.pngCDel labelp.png, order 720p5
γp
6
= p{4}2{3}2{3}2{3}2
CDel pnode 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
p66p5
p{}
15p4
p{4}2
20p3
p{4}2{3}2
15p2
p{4}2{3}2{3}2
6p
p{4}2{3}2{3}2{3}2
noneGeneralized 6-cube
Same as p{}6 or CDel pnode 1.pngCDel 2c.pngCDel pnode 1.pngCDel 2c.pngCDel pnode 1.pngCDel 2c.pngCDel pnode 1.pngCDel 2c.pngCDel pnode 1.pngCDel 2c.pngCDel pnode 1.png, order p6

Visualizations of regular complex 6-polytopes

Generalized 6-orthoplexes

Generalized 6-orthoplexes have a regular construction as CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel pnode.png and quasiregular form as CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch.pngCDel labelp.png. All elements are simplexes.

Generalized 6-cubes

Generalized 6-cubes have a regular construction as CDel pnode 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png and prismatic construction as CDel pnode 1.pngCDel 2c.pngCDel pnode 1.pngCDel 2c.pngCDel pnode 1.pngCDel 2c.pngCDel pnode 1.pngCDel 2c.pngCDel pnode 1.pngCDel 2c.pngCDel pnode 1.png, a product of six p-gonal 1-polytopes. Elements are lower dimensional generalized cubes.

Enumeration of regular complex apeirotopes

Coxeter enumerated this list of nonstarry regular complex apeirotopes or honeycombs. [28]

For each dimension there are 12 apeirotopes symbolized as δp,r
n+1
exists in any dimensions , or if p=q=2. Coxeter calls these generalized cubic honeycombs for n>2. [29]

Each has proportional element counts given as:

k-faces = , where and n! denotes the factorial of n.

Regular complex 1-polytopes

The only regular complex 1-polytope is {}, or CDel infinnode 1.png. Its real representation is an apeirogon, {}, or CDel node 1.pngCDel infin.pngCDel node.png.

Regular complex apeirogons

Some subgroups of the apeirogonal Shephard groups Rank2 infinite shephard subgroups.png
Some subgroups of the apeirogonal Shephard groups
11 complex apeirogons p{q}r with edge interiors colored in light blue, and edges around one vertex are colored individually. Vertices are shown as small black squares. Edges are seen as p-sided regular polygons and vertex figures are r-gonal. Complex apeirogon chart2.png
11 complex apeirogons p{q}r with edge interiors colored in light blue, and edges around one vertex are colored individually. Vertices are shown as small black squares. Edges are seen as p-sided regular polygons and vertex figures are r-gonal.
A quasiregular apeirogon is a mixture of two regular apeirogons and , seen here with blue and pink edges. has only one color of edges because q is odd, making it a double covering. 7 quasiregular complex apeirogons.png
A quasiregular apeirogon CDel pnode 1.pngCDel q.pngCDel rnode 1.png is a mixture of two regular apeirogons CDel pnode 1.pngCDel q.pngCDel rnode.png and CDel pnode.pngCDel q.pngCDel rnode 1.png, seen here with blue and pink edges. CDel 6node 1.pngCDel 3.pngCDel 6node 1.png has only one color of edges because q is odd, making it a double covering.

Rank 2 complex apeirogons have symmetry p[q]r, where 1/p + 2/q + 1/r = 1. Coxeter expresses them as δp,r
2
where q is constrained to satisfy q = 2/(1 – (p + r)/pr). [30]

There are 8 solutions:

2[]23[12]24[8]26[6]23[6]36[4]34[4]46[3]6
CDel node.pngCDel infin.pngCDel node.pngCDel 3node.pngCDel 12.pngCDel node.pngCDel 4node.pngCDel 8.pngCDel node.pngCDel 6node.pngCDel 6.pngCDel node.pngCDel 3node.pngCDel 6.pngCDel 3node.pngCDel 6node.pngCDel 4.pngCDel 3node.pngCDel 4node.pngCDel 4.pngCDel 4node.pngCDel 6node.pngCDel 3.pngCDel 6node.png

There are two excluded solutions odd q and unequal p and r: 10[5]2 and 12[3]4, or CDel 10node.pngCDel 5.pngCDel node.png and CDel 12node.pngCDel 3.pngCDel 4node.png.

A regular complex apeirogon p{q}r has p-edges and r-gonal vertex figures. The dual apeirogon of p{q}r is r{q}p. An apeirogon of the form p{q}p is self-dual. Groups of the form p[2q]2 have a half symmetry p[q]p, so a regular apeirogon CDel pnode 1.pngCDel 2x.pngCDel q.pngCDel node.png is the same as quasiregular CDel pnode 1.pngCDel q.pngCDel pnode 1.png. [31]

Apeirogons can be represented on the Argand plane share four different vertex arrangements. Apeirogons of the form 2{q}r have a vertex arrangement as {q/2,p}. The form p{q}2 have vertex arrangement as r{p,q/2}. Apeirogons of the form p{4}r have vertex arrangements {p,r}.

Including affine nodes, and , there are 3 more infinite solutions: [2], [4]2, [3]3, and CDel infinnode 1.pngCDel 2.pngCDel infinnode 1.png, CDel infinnode 1.pngCDel 4.pngCDel node.png, and CDel infinnode 1.pngCDel 3.pngCDel 3node.png. The first is an index 2 subgroup of the second. The vertices of these apeirogons exist in .

Rank 2
SpaceGroupApeirogonEdge rep. [32] PictureNotes
2[]2 = []δ2,2
2
= {}
       
CDel node 1.pngCDel infin.pngCDel node.png
{} Regular apeirogon.svg Real apeirogon
Same as CDel node 1.pngCDel infin.pngCDel node 1.png
/ [4]2{4}2CDel infinnode 1.pngCDel 4.pngCDel node.png{} {4,4} Complex polygon i-4-2.png Same as CDel infinnode 1.pngCDel 2.pngCDel infinnode 1.png Truncated complex polygon i-2-i.png
[3]3{3}3CDel infinnode 1.pngCDel 3.pngCDel 3node.png{} {3,6} Complex apeirogon 2-6-6.png Same as CDel infinnode 1.pngCDel split1.pngCDel branch 11.pngCDel label-ii.png Truncated complex polygon i-3-i-3-i-3-.png
p[q]rδp,r
2
= p{q}r
CDel pnode 1.pngCDel q.pngCDel rnode.pngp{}
3[12]2δ3,2
2
= 3{12}2
CDel 3node 1.pngCDel 12.pngCDel node.png3{} r{3,6} Complex apeirogon 3-12-2.png Same as CDel 3node 1.pngCDel 6.pngCDel 3node 1.png Truncated complex polygon 3-6-3.png
δ2,3
2
= 2{12}3
CDel node 1.pngCDel 12.pngCDel 3node.png{} {6,3} Complex apeirogon 2-12-3.png
3[6]3δ3,3
2
= 3{6}3
CDel 3node 1.pngCDel 6.pngCDel 3node.png3{} {3,6} Complex apeirogon 3-6-3.png Same as CDel node h.pngCDel 12.pngCDel 3node.png
4[8]2δ4,2
2
= 4{8}2
CDel 4node 1.pngCDel 8.pngCDel node.png4{} {4,4} Complex apeirogon 4-8-2.png Same as CDel 4node 1.pngCDel 4.pngCDel 4node 1.png Truncated complex polygon 4-4-4.png
δ2,4
2
= 2{8}4
CDel node 1.pngCDel 8.pngCDel 4node.png{} {4,4} Complex apeirogon 2-8-4.svg
4[4]4δ4,4
2
= 4{4}4
CDel 4node 1.pngCDel 4.pngCDel 4node.png4{} {4,4} Complex apeirogon 4-4-4.png Same as CDel node h.pngCDel 8.pngCDel 4node.png
6[6]2δ6,2
2
= 6{6}2
CDel 6node 1.pngCDel 6.pngCDel node.png6{} r{3,6} Complex apeirogon 6-6-2.png Same as CDel 6node 1.pngCDel 3.pngCDel 6node 1.png
δ2,6
2
= 2{6}6
CDel node 1.pngCDel 6.pngCDel 6node.png{} {3,6} Complex apeirogon 2-6-6.png
6[4]3δ6,3
2
= 6{4}3
CDel 6node 1.pngCDel 4.pngCDel 3node.png6{} {6,3} Complex apeirogon 6-4-3.png
δ3,6
2
= 3{4}6
CDel 3node 1.pngCDel 4.pngCDel 6node.png3{} {3,6} Complex apeirogon 3-4-6.png
6[3]6δ6,6
2
= 6{3}6
CDel 6node 1.pngCDel 3.pngCDel 6node.png6{} {3,6} Complex apeirogon 6-3-6.png Same as CDel node h.pngCDel 6.pngCDel 6node.png

Regular complex apeirohedra

There are 22 regular complex apeirohedra, of the form p{a}q{b}r. 8 are self-dual (p=r and a=b), while 14 exist as dual polytope pairs. Three are entirely real (p=q=r=2).

Coxeter symbolizes 12 of them as δp,r
3
or p{4}2{4}r is the regular form of the product apeirotope δp,r
2
× δp,r
2
or p{q}r × p{q}r, where q is determined from p and r.

CDel pnode 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel qnode.png is the same as CDel pnode 1.pngCDel 3split1-44.pngCDel branch.pngCDel labelq.png, as well as CDel pnode 1.pngCDel q.pngCDel rnode.pngCDel 2.pngCDel pnode 1.pngCDel q.pngCDel rnode.png, for p,r=2,3,4,6. Also CDel pnode 1.pngCDel 4.pngCDel pnode.pngCDel 4.pngCDel node.png = CDel pnode.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel pnode.png. [33]

Rank 3
SpaceGroupApeirohedronVertexEdgeFacevan Oss
apeirogon
Notes
2[3]2[4]{4}2{3}2CDel infinnode 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png{}{4}2Same as {}×{}×{} or CDel infinnode 1.pngCDel 2c.pngCDel infinnode 1.pngCDel 2c.pngCDel infinnode 1.png
Real representation {4,3,4}
p[4]2[4]rp{4}2{4}r           
CDel pnode 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel rnode.png
p22prp{}r2p{4}22{q}rSame as CDel pnode 1.pngCDel q.pngCDel rnode.pngCDel 2.pngCDel pnode 1.pngCDel q.pngCDel rnode.png, p,r=2,3,4,6
[4,4]δ2,2
3
= {4,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png48{}4{4}{}Real square tiling
Same as CDel node 1.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png or CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node 1.png or CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
3[4]2[4]2
 
3[4]2[4]3
4[4]2[4]2
 
4[4]2[4]4
6[4]2[4]2
 
6[4]2[4]3
 
6[4]2[4]6
3{4}2{4}2
2{4}2{4}3
3{4}2{4}3
4{4}2{4}2
2{4}2{4}4
4{4}2{4}4
6{4}2{4}2
2{4}2{4}6
6{4}2{4}3
3{4}2{4}6
6{4}2{4}6
CDel 3node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel 3node.png
CDel 3node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel 3node.png
CDel 4node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel 4node.png
CDel 4node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel 4node.png
CDel 6node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel 6node.png
CDel 6node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel 3node.png
CDel 3node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel 6node.png
CDel 6node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel 6node.png
9
4
9
16
4
16
36
4
36
9
36
12
12
18
16
16
32
24
24
36
36
72
3{}
{}
3{}
4{}
{}
4{}
6{}
{}
6{}
3{}
6{}
4
9
9
4
16
16
4
36
9
36
36
3{4}2
{4}
3{4}2
4{4}2
{4}
4{4}2
6{4}2
{4}
6{4}2
3{4}2
6{4}2
p{q}rSame as CDel 3node 1.pngCDel 12.pngCDel node.pngCDel 2.pngCDel 3node 1.pngCDel 12.pngCDel node.png or CDel 3node 1.pngCDel 6.pngCDel 3node 1.pngCDel 2.pngCDel 3node 1.pngCDel 6.pngCDel 3node 1.png or CDel 3node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel 3node 1.png
Same as CDel node 1.pngCDel 12.pngCDel 3node.pngCDel 2.pngCDel node 1.pngCDel 12.pngCDel 3node.png
Same as CDel 3node 1.pngCDel 6.pngCDel 3node.pngCDel 2.pngCDel 3node 1.pngCDel 6.pngCDel 3node.png
Same as CDel 4node 1.pngCDel 8.pngCDel node.pngCDel 2.pngCDel 4node 1.pngCDel 8.pngCDel node.png or CDel 4node 1.pngCDel 4.pngCDel 4node 1.pngCDel 2.pngCDel 4node 1.pngCDel 4.pngCDel 4node 1.png or CDel 4node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel 4node 1.png
Same as CDel node 1.pngCDel 8.pngCDel 4node.pngCDel 2.pngCDel node 1.pngCDel 8.pngCDel 4node.png
Same as CDel 4node 1.pngCDel 4.pngCDel 4node.pngCDel 2.pngCDel 4node 1.pngCDel 4.pngCDel 4node.png
Same as CDel 6node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel 6node 1.pngCDel 6.pngCDel node.png or CDel 6node 1.pngCDel 3.pngCDel 6node 1.pngCDel 2.pngCDel 6node 1.pngCDel 3.pngCDel 6node 1.png or CDel 6node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel 6node 1.png
Same as CDel node 1.pngCDel 6.pngCDel 6node.pngCDel 2.pngCDel node 1.pngCDel 6.pngCDel 6node.png
Same as CDel 6node 1.pngCDel 4.pngCDel 3node.pngCDel 2.pngCDel 6node 1.pngCDel 4.pngCDel 3node.png
Same as CDel 3node 1.pngCDel 4.pngCDel 6node.pngCDel 2.pngCDel 3node 1.pngCDel 4.pngCDel 6node.png
Same as CDel 6node 1.pngCDel 3.pngCDel 6node.pngCDel 2.pngCDel 6node 1.pngCDel 3.pngCDel 6node.png
SpaceGroupApeirohedronVertexEdgeFacevan Oss
apeirogon
Notes
2[4]r[4]22{4}r{4}2           
CDel node 1.pngCDel 4.pngCDel rnode.pngCDel 4.pngCDel node.png
2{}2p{4}2'2{4}rSame as CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel rnode.png and CDel rnode.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel rnode.png, r=2,3,4,6
[4,4]{4,4}CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png24{}2{4}{}Same as CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png and CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
2[4]3[4]2
2[4]4[4]2
2[4]6[4]2
2{4}3{4}2
2{4}4{4}2
2{4}6{4}2
CDel node 1.pngCDel 4.pngCDel 3node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel 4node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel 6node.pngCDel 4.pngCDel node.png
29
16
36
{}22{4}3
2{4}4
2{4}6
2{q}rSame as CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel 3node.png and CDel 3node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel 3node.png
Same as CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel 4node.png and CDel 4node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel 4node.png
Same as CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel 6node.png and CDel 6node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel 6node.png [34]
SpaceGroupApeirohedronVertexEdgeFacevan Oss
apeirogon
Notes
2[6]2[3]2
= [6,3]
{3,6}           
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
13{}2{3}{}Real triangular tiling
{6,3}CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png23{}1{6}noneReal hexagonal tiling
3[4]3[3]33{3}3{4}3CDel 3node 1.pngCDel 3.pngCDel 3node.pngCDel 4.pngCDel 3node.png183{}33{3}33{4}6Same as CDel 3node 1.pngCDel 3split1.pngCDel branch.pngCDel label-33.png
3{4}3{3}3CDel 3node 1.pngCDel 4.pngCDel 3node.pngCDel 3.pngCDel 3node.png383{}13{4}33{12}2
4[3]4[3]44{3}4{3}4CDel 4node 1.pngCDel 3.pngCDel 4node.pngCDel 3.pngCDel 4node.png164{}14{3}44{4}4Self-dual, same as CDel node h.pngCDel 4.pngCDel 4node.pngCDel 3.pngCDel 4node.png
4[3]4[4]24{3}4{4}2CDel 4node 1.pngCDel 3.pngCDel 4node.pngCDel 4.pngCDel node.png1124{}34{3}42{8}4Same as CDel 4node.pngCDel 3.pngCDel 4node 1.pngCDel 3.pngCDel 4node.png
2{4}4{3}4CDel node 1.pngCDel 4.pngCDel 4node.pngCDel 3.pngCDel 4node.png312{}12{4}44{4}4

Regular complex 3-apeirotopes

There are 16 regular complex apeirotopes in . Coxeter expresses 12 of them by δp,r
3
where q is constrained to satisfy q = 2/(1 – (p + r)/pr). These can also be decomposed as product apeirotopes: CDel pnode 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel rnode.png = CDel pnode 1.pngCDel q.pngCDel rnode.pngCDel 2.pngCDel pnode 1.pngCDel q.pngCDel rnode.pngCDel 2.pngCDel pnode 1.pngCDel q.pngCDel rnode.png. The first case is the cubic honeycomb.

Rank 4
SpaceGroup3-apeirotopeVertexEdgeFaceCellvan Oss
apeirogon
Notes
p[4]2[3]2[4]rδp,r
3
= p{4}2{3}2{4}r
CDel pnode 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel rnode.png
p{}p{4}2p{4}2{3}2p{q}rSame as CDel pnode 1.pngCDel q.pngCDel rnode.pngCDel 2.pngCDel pnode 1.pngCDel q.pngCDel rnode.pngCDel 2.pngCDel pnode 1.pngCDel q.pngCDel rnode.png
2[4]2[3]2[4]2
=[4,3,4]
δ2,2
3
= 2{4}2{3}2{4}2
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
{}{4}{4,3} Cubic honeycomb
Same as CDel node 1.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png or CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node 1.png or CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
3[4]2[3]2[4]2δ3,2
3
= 3{4}2{3}2{4}2
CDel 3node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
3{}3{4}23{4}2{3}2Same as CDel 3node 1.pngCDel 12.pngCDel node.pngCDel 2.pngCDel 3node 1.pngCDel 12.pngCDel node.pngCDel 2.pngCDel 3node 1.pngCDel 12.pngCDel node.png or CDel 3node 1.pngCDel 12.pngCDel node.pngCDel 2.pngCDel 3node 1.pngCDel 6.pngCDel 3node 1.pngCDel 2.pngCDel 3node 1.pngCDel 6.pngCDel 3node 1.png or CDel 3node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 3node 1.png
δ2,3
3
= 2{4}2{3}2{4}3
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 3node.png
{}{4}{4,3}Same as CDel node 1.pngCDel 12.pngCDel 3node.pngCDel 2.pngCDel node 1.pngCDel 12.pngCDel 3node.pngCDel 2.pngCDel node 1.pngCDel 12.pngCDel 3node.png
3[4]2[3]2[4]3δ3,3
3
= 3{4}2{3}2{4}3
CDel 3node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 3node.png
3{}3{4}23{4}2{3}2Same as CDel 3node 1.pngCDel 6.pngCDel 3node.pngCDel 2.pngCDel 3node 1.pngCDel 6.pngCDel 3node.pngCDel 2.pngCDel 3node 1.pngCDel 6.pngCDel 3node.png
4[4]2[3]2[4]2δ4,2
3
= 4{4}2{3}2{4}2
CDel 4node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
4{}4{4}24{4}2{3}2Same as CDel 4node 1.pngCDel 8.pngCDel node.pngCDel 2.pngCDel 4node 1.pngCDel 8.pngCDel node.pngCDel 2.pngCDel 4node 1.pngCDel 8.pngCDel node.png or CDel 4node 1.pngCDel 8.pngCDel node.pngCDel 2.pngCDel 4node 1.pngCDel 4.pngCDel 4node 1.pngCDel 2.pngCDel 4node 1.pngCDel 4.pngCDel 4node 1.png or CDel 4node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 4node 1.png
δ2,4
3
= 2{4}2{3}2{4}4
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 4node.png
{}{4}{4,3}Same as CDel node 1.pngCDel 8.pngCDel 4node.pngCDel 2.pngCDel node 1.pngCDel 8.pngCDel 4node.pngCDel 2.pngCDel node 1.pngCDel 8.pngCDel 4node.png
4[4]2[3]2[4]4δ4,4
3
= 4{4}2{3}2{4}4
CDel 4node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 4node.png
4{}4{4}24{4}2{3}2Same as CDel 4node 1.pngCDel 4.pngCDel 4node.pngCDel 2.pngCDel 4node 1.pngCDel 4.pngCDel 4node.pngCDel 2.pngCDel 4node 1.pngCDel 4.pngCDel 4node.png
6[4]2[3]2[4]2δ6,2
3
= 6{4}2{3}2{4}2
CDel 6node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
6{}6{4}26{4}2{3}2Same as CDel 6node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel 6node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel 6node 1.pngCDel 6.pngCDel node.png or CDel 6node 1.pngCDel 3.pngCDel 6node 1.pngCDel 2.pngCDel 6node 1.pngCDel 3.pngCDel 6node 1.pngCDel 2.pngCDel 6node 1.pngCDel 3.pngCDel 6node 1.png or CDel 6node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 6node 1.png
δ2,6
3
= 2{4}2{3}2{4}6
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 6node.png
{}{4}{4,3}Same as CDel node 1.pngCDel 6.pngCDel 6node.pngCDel 2.pngCDel node 1.pngCDel 6.pngCDel 6node.pngCDel 2.pngCDel node 1.pngCDel 6.pngCDel 6node.png
6[4]2[3]2[4]3δ6,3
3
= 6{4}2{3}2{4}3
CDel 6node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 3node.png
6{}6{4}26{4}2{3}2Same as CDel 6node 1.pngCDel 4.pngCDel 3node.pngCDel 2.pngCDel 6node 1.pngCDel 4.pngCDel 3node.pngCDel 2.pngCDel 6node 1.pngCDel 4.pngCDel 3node.png
δ3,6
3
= 3{4}2{3}2{4}6
CDel 6node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 3node.png
3{}3{4}23{4}2{3}2Same as CDel 6node 1.pngCDel 4.pngCDel 3node.pngCDel 2.pngCDel 6node 1.pngCDel 4.pngCDel 3node.pngCDel 2.pngCDel 6node 1.pngCDel 4.pngCDel 3node.png
6[4]2[3]2[4]6δ6,6
3
= 6{4}2{3}2{4}6
CDel 6node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 6node.png
6{}6{4}26{4}2{3}2Same as CDel 6node 1.pngCDel 3.pngCDel 6node.pngCDel 2.pngCDel 6node 1.pngCDel 3.pngCDel 6node.pngCDel 2.pngCDel 6node 1.pngCDel 3.pngCDel 6node.png
Rank 4, exceptional cases
SpaceGroup3-apeirotopeVertexEdgeFaceCellvan Oss
apeirogon
Notes
2[4]3[3]3[3]33{3}3{3}3{4}2
CDel 3node 1.pngCDel 3.pngCDel 3node.pngCDel 3.pngCDel 3node.pngCDel 4.pngCDel node.png
124 3{}27 3{3}32 3{3}3{3}33{4}6Same as CDel 3node 1.pngCDel 3.pngCDel 3node.pngCDel split1.pngCDel nodes.pngCDel label-33.png
2{4}3{3}3{3}3
CDel node 1.pngCDel 4.pngCDel 3node.pngCDel 3.pngCDel 3node.pngCDel 3.pngCDel 3node.png
227 {}24 2{4}31 2{4}3{3}32{12}3
2[3]2[4]3[3]32{3}2{4}3{3}3
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 3node.pngCDel 3.pngCDel 3node.png
127 {}72 2{3}28 2{3}2{4}32{6}6
3{3}3{4}2{3}2
CDel 3node 1.pngCDel 3.pngCDel 3node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
872 3{}27 3{3}31 3{3}3{4}23{6}3Same as CDel 3node.pngCDel 3.pngCDel 3node 1.pngCDel split1.pngCDel nodes.pngCDel label-33.png or CDel 3node.pngCDel 3.pngCDel 3node 1.pngCDel 3.pngCDel 3node.pngCDel 4.pngCDel node.png

Regular complex 4-apeirotopes

There are 15 regular complex apeirotopes in . Coxeter expresses 12 of them by δp,r
4
where q is constrained to satisfy q = 2/(1 – (p + r)/pr). These can also be decomposed as product apeirotopes: CDel pnode 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel rnode.png = CDel pnode 1.pngCDel q.pngCDel rnode.pngCDel 2.pngCDel pnode 1.pngCDel q.pngCDel rnode.pngCDel 2.pngCDel pnode 1.pngCDel q.pngCDel rnode.pngCDel 2.pngCDel pnode 1.pngCDel q.pngCDel rnode.png. The first case is the tesseractic honeycomb. The 16-cell honeycomb and 24-cell honeycomb are real solutions. The last solution is generated has Witting polytope elements.

Rank 5
SpaceGroup4-apeirotopeVertexEdgeFaceCell4-facevan Oss
apeirogon
Notes
p[4]2[3]2[3]2[4]rδp,r
4
= p{4}2{3}2{3}2{4}r
CDel pnode 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel rnode.png
p{}p{4}2p{4}2{3}2p{4}2{3}2{3}2p{q}rSame as CDel pnode 1.pngCDel q.pngCDel rnode.pngCDel 2.pngCDel pnode 1.pngCDel q.pngCDel rnode.pngCDel 2.pngCDel pnode 1.pngCDel q.pngCDel rnode.pngCDel 2.pngCDel pnode 1.pngCDel q.pngCDel rnode.png
2[4]2[3]2[3]2[4]2δ2,2
4
= {4,3,3,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
{}{4}{4,3}{4,3,3}{} Tesseractic honeycomb
Same as CDel node 1.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
2[3]2[4]2[3]2[3]2
=[3,4,3,3]
{3,3,4,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
112 {}32 {3}24 {3,3}3 {3,3,4}Real 16-cell honeycomb
Same as CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes.png
{3,4,3,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
324 {}32 {3}12 {3,4}1 {3,4,3}Real 24-cell honeycomb
Same as CDel nodes.pngCDel split2.pngCDel node 1.pngCDel split1.pngCDel nodes.png or CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
3[3]3[3]3[3]3[3]33{3}3{3}3{3}3{3}3
CDel 3node 1.pngCDel 3.pngCDel 3node.pngCDel 3.pngCDel 3node.pngCDel 3.pngCDel 3node.pngCDel 3.pngCDel 3node.png
180 3{}270 3{3}380 3{3}3{3}31 3{3}3{3}3{3}33{4}6 representation 521

Regular complex 5-apeirotopes and higher

There are only 12 regular complex apeirotopes in or higher, [35] expressed δp,r
n
where q is constrained to satisfy q = 2/(1 – (p + r)/pr). These can also be decomposed a product of n apeirogons: CDel pnode 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png ... CDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel rnode.png = CDel pnode 1.pngCDel q.pngCDel rnode.pngCDel 2.pngCDel pnode 1.pngCDel q.pngCDel rnode.png ... CDel pnode 1.pngCDel q.pngCDel rnode.pngCDel 2.pngCDel pnode 1.pngCDel q.pngCDel rnode.png. The first case is the real hypercube honeycomb.

Rank 6
SpaceGroup5-apeirotopesVerticesEdgeFaceCell4-face5-facevan Oss
apeirogon
Notes
p[4]2[3]2[3]2[3]2[4]rδp,r
5
= p{4}2{3}2{3}2{3}2{4}r
CDel pnode 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel rnode.png
p{}p{4}2p{4}2{3}2p{4}2{3}2{3}2p{4}2{3}2{3}2{3}2p{q}rSame as CDel pnode 1.pngCDel q.pngCDel rnode.pngCDel 2.pngCDel pnode 1.pngCDel q.pngCDel rnode.pngCDel 2.pngCDel pnode 1.pngCDel q.pngCDel rnode.pngCDel 2.pngCDel pnode 1.pngCDel q.pngCDel rnode.pngCDel 2.pngCDel pnode 1.pngCDel q.pngCDel rnode.png
2[4]2[3]2[3]2[3]2[4]2
=[4,3,3,3,4]
δ2,2
5
= {4,3,3,3,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
{}{4}{4,3}{4,3,3}{4,3,3,3}{} 5-cubic honeycomb
Same as CDel node 1.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png

van Oss polygon

A red square van Oss polygon in the plane of an edge and center of a regular octahedron. Van Oss square hole in octahedron.png
A red square van Oss polygon in the plane of an edge and center of a regular octahedron.

A van Oss polygon is a regular polygon in the plane (real plane , or unitary plane ) in which both an edge and the centroid of a regular polytope lie, and formed of elements of the polytope. Not all regular polytopes have Van Oss polygons.

For example, the van Oss polygons of a real octahedron are the three squares whose planes pass through its center. In contrast a cube does not have a van Oss polygon because the edge-to-center plane cuts diagonally across two square faces and the two edges of the cube which lie in the plane do not form a polygon.

Infinite honeycombs also have van Oss apeirogons. For example, the real square tiling and triangular tiling have apeirogons {} van Oss apeirogons. [36]

If it exists, the van Oss polygon of regular complex polytope of the form p{q}r{s}t... has p-edges.

Non-regular complex polytopes

Product complex polytopes

Example product complex polytope
Complex polygon 2x5 stereographic3.png
Complex product polygon CDel node 1.pngCDel 2.pngCDel 5node 1.png or {}×5{} has 10 vertices connected by 5 2-edges and 2 5-edges, with its real representation as a 3-dimensional pentagonal prism.
Dual complex polygon 2x5 perspective.png
The dual polygon,{}+5{} has 7 vertices centered on the edges of the original, connected by 10 edges. Its real representation is a pentagonal bipyramid.

Some complex polytopes can be represented as Cartesian products. These product polytopes are not strictly regular since they'll have more than one facet type, but some can represent lower symmetry of regular forms if all the orthogonal polytopes are identical. For example, the product p{}×p{} or CDel pnode 1.pngCDel 2.pngCDel pnode 1.png of two 1-dimensional polytopes is the same as the regular p{4}2 or CDel pnode 1.pngCDel 4.pngCDel node.png. More general products, like p{}×q{} have real representations as the 4-dimensional p-q duoprisms. The dual of a product polytope can be written as a sum p{}+q{} and have real representations as the 4-dimensional p-q duopyramid. The p{}+p{} can have its symmetry doubled as a regular complex polytope 2{4}p or CDel node 1.pngCDel 4.pngCDel pnode.png.

Similarly, a complex polyhedron can be constructed as a triple product: p{}×p{}×p{} or CDel pnode 1.pngCDel 2c.pngCDel pnode 1.pngCDel 2c.pngCDel pnode 1.png is the same as the regular generalized cube, p{4}2{3}2 or CDel pnode 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png, as well as product p{4}2×p{} or CDel pnode 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel pnode 1.png. [37]

Quasiregular polygons

A quasiregular polygon is a truncation of a regular polygon. A quasiregular polygon CDel pnode 1.pngCDel q.pngCDel rnode 1.png contains alternate edges of the regular polygons CDel pnode 1.pngCDel q.pngCDel rnode.png and CDel pnode.pngCDel q.pngCDel rnode 1.png. The quasiregular polygon has p vertices on the p-edges of the regular form.

Example quasiregular polygons
p[q]r2[4]23[4]24[4]25[4]26[4]27[4]28[4]23[3]33[4]3
Regular
CDel pnode 1.pngCDel q.pngCDel rnode.png
2-generalized-2-cube.svg
CDel node 1.pngCDel 4.pngCDel node.png
4 2-edges
3-generalized-2-cube skew.svg
CDel 3node 1.pngCDel 4.pngCDel node.png
9 3-edges
4-generalized-2-cube.svg
CDel 4node 1.pngCDel 4.pngCDel node.png
16 4-edges
5-generalized-2-cube skew.svg
CDel 5node 1.pngCDel 4.pngCDel node.png
25 5-edges
6-generalized-2-cube.svg
CDel 6node 1.pngCDel 4.pngCDel node.png
36 6-edges
7-generalized-2-cube skew.svg
CDel 7node 1.pngCDel 4.pngCDel node.png
49 8-edges
8-generalized-2-cube.svg
CDel 8node 1.pngCDel 4.pngCDel node.png
64 8-edges
Complex polygon 3-3-3.svg
CDel 3node 1.pngCDel 3.pngCDel 3node.png
Complex polygon 3-4-3.png
CDel 3node 1.pngCDel 4.pngCDel 3node.png
Quasiregular
CDel pnode 1.pngCDel q.pngCDel rnode 1.png
Truncated 2-generalized-square.svg
CDel node 1.pngCDel 4.pngCDel node 1.png = CDel node 1.pngCDel 8.pngCDel node.png
4+4 2-edges
Truncated 3-generalized-square skew.svg
CDel 3node 1.pngCDel 4.pngCDel node 1.png
6 2-edges
9 3-edges
Truncated 4-generalized-square.svg
CDel 4node 1.pngCDel 4.pngCDel node 1.png
8 2-edges
16 4-edges
Truncated 5-generalized-square skew.svg
CDel 5node 1.pngCDel 4.pngCDel node 1.png
10 2-edges
25 5-edges
Truncated 6-generalized-square.svg
CDel 6node 1.pngCDel 4.pngCDel node 1.png
12 2-edges
36 6-edges
Truncated 7-generalized-square skew.svg
CDel 7node 1.pngCDel 4.pngCDel node 1.png
14 2-edges
49 7-edges
Truncated 8-generalized-square.svg
CDel 8node 1.pngCDel 4.pngCDel node 1.png
16 2-edges
64 8-edges
Complex polygon 3-6-2.png
CDel 3node 1.pngCDel 3.pngCDel 3node 1.png = CDel 3node 1.pngCDel 6.pngCDel node.png
Complex polygon 3-8-2.png
CDel 3node 1.pngCDel 4.pngCDel 3node 1.png = CDel 3node 1.pngCDel 8.pngCDel node.png
Regular
CDel pnode 1.pngCDel q.pngCDel rnode.png
2-generalized-2-orthoplex.svg
CDel node 1.pngCDel 4.pngCDel node.png
4 2-edges
3-generalized-2-orthoplex skew.svg
CDel node 1.pngCDel 4.pngCDel 3node.png
6 2-edges
3-generalized-2-orthoplex.svg
CDel node 1.pngCDel 4.pngCDel 4node.png
8 2-edges
5-generalized-2-orthoplex skew.svg
CDel node 1.pngCDel 4.pngCDel 5node.png
10 2-edges
6-generalized-2-orthoplex.svg
CDel node 1.pngCDel 4.pngCDel 6node.png
12 2-edges
7-generalized-2-orthoplex skew.svg
CDel node 1.pngCDel 4.pngCDel 7node.png
14 2-edges
8-generalized-2-orthoplex.svg
CDel node 1.pngCDel 4.pngCDel 8node.png
16 2-edges
Complex polygon 3-3-3.svg
CDel 3node 1.pngCDel 3.pngCDel 3node.png
Complex polygon 3-4-3.png
CDel 3node 1.pngCDel 4.pngCDel 3node.png

Quasiregular apeirogons

There are 7 quasiregular complex apeirogons which alternate edges of a regular apeirogon and its regular dual. The vertex arrangements of these apeirogon have real representations with the regular and uniform tilings of the Euclidean plane. The last column for the 6{3}6 apeirogon is not only self-dual, but the dual coincides with itself with overlapping hexagonal edges, thus their quasiregular form also has overlapping hexagonal edges, so it can't be drawn with two alternating colors like the others. The symmetry of the self-dual families can be doubled, so creating an identical geometry as the regular forms: CDel pnode 1.pngCDel q.pngCDel pnode 1.png = CDel pnode 1.pngCDel 2x.pngCDel q.pngCDel node.png

p[q]r4[8]24[4]46[6]26[4]33[12]23[6]36[3]6
Regular
CDel pnode 1.pngCDel q.pngCDel rnode.png or p{q}r
Complex apeirogon 4-8-2.png
CDel 4node 1.pngCDel 8.pngCDel node.png
Complex apeirogon 4-4-4.png
CDel 4node 1.pngCDel 4.pngCDel 4node.png
Complex apeirogon 6-6-2.png
CDel 6node 1.pngCDel 6.pngCDel node.png
Complex apeirogon 6-4-3.png
CDel 6node 1.pngCDel 4.pngCDel 3node.png
Complex apeirogon 3-12-2.png
CDel 3node 1.pngCDel 12.pngCDel node.png
Complex apeirogon 3-6-3.png
CDel 3node 1.pngCDel 6.pngCDel 3node.png
Complex apeirogon 6-3-6.png
CDel 6node 1.pngCDel 3.pngCDel 6node.png
Quasiregular
CDel pnode 1.pngCDel q.pngCDel rnode 1.png
Truncated complex polygon 4-8-2.png
CDel 4node 1.pngCDel 8.pngCDel node 1.png
Truncated complex polygon 4-4-4.png
CDel 4node 1.pngCDel 4.pngCDel 4node 1.png = CDel 4node 1.pngCDel 8.pngCDel node.png
Truncated complex polygon 6-6-2.png
CDel 6node 1.pngCDel 6.pngCDel node 1.png
Truncated complex polygon 6-4-3.png
CDel 6node 1.pngCDel 4.pngCDel 3node 1.png
Truncated complex polygon 3-12-2.png
CDel 3node 1.pngCDel 12.pngCDel node 1.png
Truncated complex polygon 3-6-3.png
CDel 3node 1.pngCDel 6.pngCDel 3node 1.png = CDel 3node 1.pngCDel 12.pngCDel node.png
Truncated complex polygon 6-3-6.png
CDel 6node 1.pngCDel 3.pngCDel 6node 1.png = CDel 6node 1.pngCDel 6.pngCDel node.png
Regular dual
CDel pnode.pngCDel q.pngCDel rnode 1.png or r{q}p
Complex apeirogon 2-8-4.svg
CDel 4node.pngCDel 8.pngCDel node 1.png
Complex apeirogon 4-4-4b.png
CDel 4node.pngCDel 4.pngCDel 4node 1.png
Complex apeirogon 2-6-6.png
CDel 6node.pngCDel 6.pngCDel node 1.png
Complex apeirogon 3-4-6.png
CDel 6node 1.pngCDel 4.pngCDel 3node 1.png
Complex apeirogon 2-12-3.png
CDel 3node.pngCDel 12.pngCDel node 1.png
Complex apeirogon 3-6-3b.png
CDel 3node.pngCDel 6.pngCDel 3node 1.png
Complex apeirogon 6-3-6b.png
CDel 6node.pngCDel 3.pngCDel 6node 1.png

Quasiregular polyhedra

Example truncation of 3-generalized octahedron, 2{3}2{4}3, , to its rectified limit, showing outlined-green triangles faces at the start, and blue 2{4}3, , vertex figures expanding as new faces. 3-generalized-octahedron truncation sequence.gif
Example truncation of 3-generalized octahedron, 2{3}2{4}3, CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 3node.png, to its rectified limit, showing outlined-green triangles faces at the start, and blue 2{4}3, CDel node 1.pngCDel 4.pngCDel 3node.png, vertex figures expanding as new faces.

Like real polytopes, a complex quasiregular polyhedron can be constructed as a rectification (a complete truncation) of a regular polyhedron. Vertices are created mid-edge of the regular polyhedron and faces of the regular polyhedron and its dual are positioned alternating across common edges.

For example, a p-generalized cube, CDel pnode 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png, has p3 vertices, 3p2 edges, and 3pp-generalized square faces, while the p-generalized octahedron, CDel pnode.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png, has 3p vertices, 3p2 edges and p3 triangular faces. The middle quasiregular form p-generalized cuboctahedron, CDel pnode.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png, has 3p2 vertices, 3p3 edges, and 3p+p3 faces.

Also the rectification of the Hessian polyhedron CDel 3node 1.pngCDel 3.pngCDel 3node.pngCDel 3.pngCDel 3node.png, is CDel 3node.pngCDel 3.pngCDel 3node 1.pngCDel 3.pngCDel 3node.png, a quasiregular form sharing the geometry of the regular complex polyhedron CDel 3node 1.pngCDel 3.pngCDel 3node.pngCDel 4.pngCDel node.png.

Quasiregular examples
Generalized cube/octahedra Hessian polyhedron
p=2 (real)p=3p=4p=5p=6
Generalized
cubes
CDel pnode 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
(regular)
2-generalized-3-cube.svg
Cube
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png, 8 vertices, 12 2-edges, and 6 faces.
3-generalized-3-cube redblueface.svg
CDel 3node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png, 27 vertices, 27 3-edges, and 9 faces, with one CDel 3node 1.pngCDel 4.pngCDel node.png face blue and red
4-generalized-3-cube.svg
CDel 4node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png, 64 vertices, 48 4-edges, and 12 faces.
5-generalized-3-cube.svg
CDel 5node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png, 125 vertices, 75 5-edges, and 15 faces.
6-generalized-3-cube.svg
CDel 6node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png, 216 vertices, 108 6-edges, and 18 faces.
Complex polyhedron 3-3-3-3-3.png
CDel 3node 1.pngCDel 3.pngCDel 3node.pngCDel 3.pngCDel 3node.png, 27 vertices, 72 6-edges, and 27 faces.
Generalized
cuboctahedra
CDel pnode.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
(quasiregular)
Rectified 2-generalized-3-cube.svg
Cuboctahedron
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png, 12 vertices, 24 2-edges, and 6+8 faces.
Rectified 3-generalized-3-cube blueface.svg
CDel 3node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png, 27 vertices, 81 2-edges, and 9+27 faces, with one CDel node 1.pngCDel 4.pngCDel 3node.png face blue
Rectified 4-generalized-3-cube blueface.svg
CDel 4node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png, 48 vertices, 192 2-edges, and 12+64 faces, with one CDel node 1.pngCDel 4.pngCDel 4node.png face blue
Rectified 5-generalized-3-cube.svg
CDel 5node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png, 75 vertices, 375 2-edges, and 15+125 faces.
Rectified 6-generalized-3-cube.svg
CDel 6node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png, 108 vertices, 648 2-edges, and 18+216 faces.
Complex polyhedron 3-3-3-4-2.png
CDel 3node.pngCDel 3.pngCDel 3node 1.pngCDel 3.pngCDel 3node.png = CDel 3node 1.pngCDel 3.pngCDel 3node.pngCDel 4.pngCDel node.png, 72 vertices, 216 3-edges, and 54 faces.
Generalized
octahedra
CDel pnode.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
(regular)
2-generalized-3-orthoplex.svg
Octahedron
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png, 6 vertices, 12 2-edges, and 8 {3} faces.
3-generalized-3-orthoplex.svg
CDel 3node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png, 9 vertices, 27 2-edges, and 27 {3} faces.
4-generalized-3-orthoplex.svg
CDel 4node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png, 12 vertices, 48 2-edges, and 64 {3} faces.
5-generalized-3-orthoplex.svg
CDel 5node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png, 15 vertices, 75 2-edges, and 125 {3} faces.
6-generalized-3-orthoplex.svg
CDel 6node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png, 18 vertices, 108 2-edges, and 216 {3} faces.
Complex polyhedron 3-3-3-3-3b.png
CDel 3node.pngCDel 3.pngCDel 3node.pngCDel 3.pngCDel 3node 1.png, 27 vertices, 72 6-edges, and 27 faces.

Other complex polytopes with unitary reflections of period two

Other nonregular complex polytopes can be constructed within unitary reflection groups that don't make linear Coxeter graphs. In Coxeter diagrams with loops Coxeter marks a special period interior, like CDel node 1.pngCDel 3split1.pngCDel branch.png or symbol (11 1 1)3, and group [1 1 1]3. [38] [39] These complex polytopes have not been systematically explored beyond a few cases.

The group CDel node.pngCDel psplit1.pngCDel branch.png is defined by 3 unitary reflections, R1, R2, R3, all order 2: R12 = R12 = R32 = (R1R2)3 = (R2R3)3 = (R3R1)3 = (R1R2R3R1)p = 1. The period p can be seen as a double rotation in real .

As with all Wythoff constructions, polytopes generated by reflections, the number of vertices of a single-ringed Coxeter diagram polytope is equal to the order of the group divided by the order of the subgroup where the ringed node is removed. For example, a real cube has Coxeter diagram CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png, with octahedral symmetry CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png order 48, and subgroup dihedral symmetry CDel node.pngCDel 3.pngCDel node.png order 6, so the number of vertices of a cube is 48/6=8. Facets are constructed by removing one node furthest from the ringed node, for example CDel node 1.pngCDel 4.pngCDel node.png for the cube. Vertex figures are generated by removing a ringed node and ringing one or more connected nodes, and CDel node 1.pngCDel 3.pngCDel node.png for the cube.

Coxeter represents these groups by the following symbols. Some groups have the same order, but a different structure, defining the same vertex arrangement in complex polytopes, but different edges and higher elements, like CDel node.pngCDel psplit1.pngCDel branch.png and CDel node.pngCDel 3split1.pngCDel branch.pngCDel labelp.png with p≠3. [40]

Groups generated by unitary reflections
Coxeter diagramOrderSymbol or Position in Table VII of Shephard and Todd (1954)
CDel branch.pngCDel labelp.png, (CDel node.pngCDel psplit1.pngCDel branch.png and CDel node.pngCDel 3split1.pngCDel branch.pngCDel labelp.png), CDel node.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch.pngCDel labelp.png, CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch.pngCDel labelp.png ...
pn − 1n!, p ≥ 3G(p, p, n), [p], [1 1 1]p, [1 1 (n−2)p]3
CDel node.pngCDel 3split1.pngCDel branch.pngCDel 3ab.pngCDel nodes.png, CDel node.pngCDel 3split1.pngCDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3a.pngCDel nodea.png72·6!, 108·9!Nos. 33, 34, [1 2 2]3, [1 2 3]3
CDel node.pngCDel 4split1.pngCDel branch.pngCDel label4.png, (CDel node.pngCDel 4split1.pngCDel branch.pngCDel label5.png and CDel node.pngCDel 5split1.pngCDel branch.pngCDel label4.png), (CDel node.pngCDel 3.pngCDel node.pngCDel 4split1.pngCDel branch.png and CDel node.pngCDel 3.pngCDel node.pngCDel 3split1-43.pngCDel branch.png)14·4!, 3·6!, 64·5!Nos. 24, 27, 29

Coxeter calls some of these complex polyhedra almost regular because they have regular facets and vertex figures. The first is a lower symmetry form of the generalized cross-polytope in . The second is a fractional generalized cube, reducing p-edges into single vertices leaving ordinary 2-edges. Three of them are related to the finite regular skew polyhedron in .

Some almost regular complex polyhedra [41]
SpaceGroupOrderCoxeter
symbols
VerticesEdgesFacesVertex
figure
Notes
[1 1 1p]3
CDel node.pngCDel 3split1.pngCDel branch.pngCDel labelp.png
p=2,3,4...
6p2(1 1 11p)3
CDel node 1.pngCDel 3split1.pngCDel branch.pngCDel labelp.png
3p3p2{3}{2p}Shephard symbol (1 1; 11)p
same as βp
3
= CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel pnode.png
(11 1 1p)3
CDel node.pngCDel 3split1.pngCDel branch 10l.pngCDel labelp.png
p2{3}{6}Shephard symbol (11 1; 1)p
1/pγp
3
[1 1 12]3
CDel node.pngCDel split1.pngCDel nodes.png
24(1 1 112)3
CDel node 1.pngCDel split1.pngCDel nodes.png
6128 {3}{4}Same as β2
3
= CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png = real octahedron
(11 1 12)3
CDel node.pngCDel split1.pngCDel nodes 10lu.png
464 {3}{3}1/2 γ2
3
= CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png = α3 = real tetrahedron
[1 1 1]3
CDel node.pngCDel 3split1.pngCDel branch.png
54(1 1 11)3
CDel node 1.pngCDel 3split1.pngCDel branch.png
927{3}{6}Shephard symbol (1 1; 11)3
same as β3
3
= CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 3node.png
(11 1 1)3
CDel node.pngCDel 3split1.pngCDel branch 10l.png
927{3}{6}Shephard symbol (11 1; 1)3
1/3 γ3
3
= β3
3
[1 1 14]3
CDel node.pngCDel 3split1.pngCDel branch.pngCDel label4.png
96(1 1 114)3
CDel node 1.pngCDel 3split1.pngCDel branch.pngCDel label4.png
1248{3}{8}Shephard symbol (1 1; 11)4
same as β4
3
= CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 4node.png
(11 1 14)3
CDel node.pngCDel 3split1.pngCDel branch 10l.pngCDel label4.png
16{3}{6}Shephard symbol (11 1; 1)4
1/4 γ4
3
[1 1 15]3
CDel node.pngCDel 3split1.pngCDel branch.pngCDel label5.png
150(1 1 115)3
CDel node 1.pngCDel 3split1.pngCDel branch.pngCDel label5.png
1575{3}{10}Shephard symbol (1 1; 11)5
same as β5
3
= CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 5node.png
(11 1 15)3
CDel node.pngCDel 3split1.pngCDel branch 10l.pngCDel label5.png
25{3}{6}Shephard symbol (11 1; 1)5
1/5 γ5
3
[1 1 16]3
CDel node.pngCDel 3split1.pngCDel branch.pngCDel label6.png
216(1 1 116)3
CDel node 1.pngCDel 3split1.pngCDel branch.pngCDel label6.png
18216{3}{12}Shephard symbol (1 1; 11)6
same as β6
3
= CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 6node.png
(11 1 16)3
CDel node.pngCDel 3split1.pngCDel branch 10l.pngCDel label6.png
36{3}{6}Shephard symbol (11 1; 1)6
1/6 γ6
3
[1 1 14]4
CDel node.pngCDel 4split1.pngCDel branch.pngCDel label4.png
336(1 1 114)4
CDel node 1.pngCDel 4split1.pngCDel branch.pngCDel label4.png
42168112 {3}{8} representation {3,8|,4} = {3,8}8
(11 1 14)4
CDel node.pngCDel 4split1.pngCDel branch 10l.pngCDel label4.png
56{3}{6}
[1 1 15]4
CDel node.pngCDel 4split1.pngCDel branch.pngCDel label5.png
2160(1 1 115)4
CDel node 1.pngCDel 4split1.pngCDel branch.pngCDel label5.png
2161080720 {3}{10} representation {3,10|,4} = {3,10}8
(11 1 15)4
CDel node.pngCDel 4split1.pngCDel branch 10l.pngCDel label5.png
360{3}{6}
[1 1 14]5
CDel node.pngCDel 5split1.pngCDel branch.pngCDel label4.png
(1 1 114)5
CDel node 1.pngCDel 5split1.pngCDel branch.pngCDel label4.png
2701080720 {3}{8} representation {3,8|,5} = {3,8}10
(11 1 14)5
CDel node.pngCDel 5split1.pngCDel branch 10l.pngCDel label4.png
360{3}{6}

Coxeter defines other groups with anti-unitary constructions, for example these three. The first was discovered and drawn by Peter McMullen in 1966. [42]

More almost regular complex polyhedra [41]
SpaceGroupOrderCoxeter
symbols
VerticesEdgesFacesVertex
figure
Notes
[1 14 14](3)
CDel node.pngCDel anti3split1-44.pngCDel branch.png
336(11 14 14)(3)
CDel node 1.pngCDel anti3split1-44.pngCDel branch.png
5616884 {4}{6} representation {4,6|,3} = {4,6}6
[15 14 14](3)
CDel node.pngCDel anti3split1-44.pngCDel branch.pngCDel label5.png
2160(115 14 14)(3)
CDel node 1.pngCDel anti3split1-44.pngCDel branch.pngCDel label5.png
2161080540 {4}{10} representation {4,10|,3} = {4,10}6
[14 15 15](3)
CDel node.pngCDel anti3split1-55.pngCDel branch.pngCDel label4.png
(114 15 15)(3)
CDel node 1.pngCDel anti3split1-55.pngCDel branch.pngCDel label4.png
2701080432 {5}{8} representation {5,8|,3} = {5,8}6
Some complex 4-polytopes [41]
SpaceGroupOrderCoxeter
symbols
VerticesOther
elements
CellsVertex
figure
Notes
[1 1 2p]3
CDel node.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch.pngCDel labelp.png
p=2,3,4...
24p3(1 1 22p)3
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch.pngCDel labelp.png
4pCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 3split1.pngCDel branch.pngCDel labelp.pngShephard (22 1; 1)p
same as βp
4
= CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel pnode.png
(11 1 2p )3
CDel node.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch 10lu.pngCDel labelp.png
p3CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 3split1.pngCDel branch 10lu.pngCDel labelp.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngShephard (2 1; 11)p
1/pγp
4
[1 1 22]3
=[31,1,1]
CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
192(1 1 222)3
CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
824 edges
32 faces
16 CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel split1.pngCDel nodes.pngβ2
4
= CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png, real 16-cell
(11 1 22 )3
CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png
1/2 γ2
4
= CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h.png = β2
4
, real 16-cell
[1 1 2]3
CDel node.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch.png
648(1 1 22)3
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch.png
12CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 3split1.pngCDel branch.pngShephard (22 1; 1)3
same as β3
4
= CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 3node.png
(11 1 23)3
CDel node.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch 10lu.png
27CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 3split1.pngCDel branch 10lu.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngShephard (2 1; 11)3
1/3 γ3
4
[1 1 24]3
CDel node.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch.pngCDel label4.png
1536(1 1 224)3
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch.pngCDel label4.png
16CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 3split1.pngCDel branch.pngCDel label4.pngShephard (22 1; 1)4
same as β4
4
= CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel 4node.png
(11 1 24 )3
CDel node.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch 10lu.pngCDel label4.png
64CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 3split1.pngCDel branch 10lu.pngCDel label4.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngShephard (2 1; 11)4
1/4 γ4
4
[14 1 2]3
CDel node.pngCDel 3.pngCDel node.pngCDel 3split1-43.pngCDel branch.png
7680(22 14 1)3
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3split1-43.pngCDel branch.png
80CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 3split1-43.pngCDel branch.pngShephard (22 1; 1)4
(114 1 2)3
CDel node.pngCDel 3.pngCDel node.pngCDel 3split1-43.pngCDel branch 01l.png
160CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 3split1-43.pngCDel branch 01l.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngShephard (2 1; 11)4
(11 14 2)3
CDel node.pngCDel 3.pngCDel node.pngCDel 3split1-43.pngCDel branch 10l.png
320CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 3split1-43.pngCDel branch 10l.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngShephard (2 11; 1)4
[1 1 2]4
CDel node.pngCDel 3.pngCDel node.pngCDel 4split1.pngCDel branch.png
(1 1 22)4
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4split1.pngCDel branch.png
80640 edges
1280 triangles
640 CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 4split1.pngCDel branch.png
(11 1 2)4
CDel node.pngCDel 3.pngCDel node.pngCDel 4split1.pngCDel branch 10lu.png
320CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 4split1.pngCDel branch 10lu.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Some complex 5-polytopes [41]
SpaceGroupOrderCoxeter
symbols
VerticesEdgesFacetsVertex
figure
Notes
[1 1 3p]3
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch.pngCDel labelp.png
p=2,3,4...
120p4(1 1 33p)3
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch.pngCDel labelp.png
5pCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch.pngCDel labelp.pngShephard (33 1; 1)p
same as βp
5
= CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel pnode.png
(11 1 3p)3
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch 10lu.pngCDel labelp.png
p4CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch 10lu.pngCDel labelp.png
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngShephard (3 1; 11)p
1/pγp
5
[2 2 1]3
CDel node.pngCDel 3split1.pngCDel branch.pngCDel 3ab.pngCDel nodes.png
51840(2 1 22)3
CDel node.pngCDel 3split1.pngCDel branch.pngCDel 3ab.pngCDel nodes 10l.png
80CDel node.pngCDel 3split1.pngCDel branch.pngCDel 3a.pngCDel nodea 1.png
CDel branch.pngCDel 3ab.pngCDel nodes 10l.png
CDel node.pngCDel 3split1.pngCDel branch 10lr.pngCDel 3b.pngCDel nodeb.pngShephard (2 1; 22)3
(2 11 2)3
CDel node 1.pngCDel 3split1.pngCDel branch.pngCDel 3ab.pngCDel nodes.png
432CDel node 1.pngCDel 3split1.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel branch 11.pngCDel 3ab.pngCDel nodes.pngShephard (2 11; 2)3
Some complex 6-polytopes [41]
SpaceGroupOrderCoxeter
symbols
VerticesEdgesFacetsVertex
figure
Notes
[1 1 4p]3
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch.pngCDel labelp.png
p=2,3,4...
720p5(1 1 44p)3
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch.pngCDel labelp.png
6pCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch.pngCDel labelp.pngShephard (44 1; 1)p
same as βp
6
= CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel pnode.png
(11 1 4p)3
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch 10lu.pngCDel labelp.png
p5CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3split1.pngCDel branch 10lu.pngCDel labelp.png
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngShephard (4 1; 11)p
1/pγp
6
[1 2 3]3
CDel node.pngCDel 3split1.pngCDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3a.pngCDel nodea.png
39191040(2 1 33)3
CDel node.pngCDel 3split1.pngCDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3a.pngCDel nodea 1.png
756CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3a.pngCDel nodea 1.png
CDel node.pngCDel 3split1.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png
CDel node.pngCDel 3split1.pngCDel branch.pngCDel 3ab.pngCDel nodes 10l.pngShephard (2 1; 33)3
(22 1 3)3
CDel node.pngCDel 3split1.pngCDel branch.pngCDel 3ab.pngCDel nodes 01lr.pngCDel 3a.pngCDel nodea.png
4032CDel node.pngCDel 3split1.pngCDel branch.pngCDel 3ab.pngCDel nodes 01l.png
CDel branch.pngCDel 3ab.pngCDel nodes 01lr.pngCDel 3a.pngCDel nodea.png
CDel node.pngCDel 3split1.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngShephard (22 1; 3)3
(2 11 3)3
CDel node 1.pngCDel 3split1.pngCDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3a.pngCDel nodea.png
54432CDel node 1.pngCDel 3split1.pngCDel branch.pngCDel 3ab.pngCDel nodes.png
CDel node 1.pngCDel 3split1.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3a.pngCDel nodea.pngShephard (2 11; 3)3

Visualizations

See also

Notes

  1. Peter Orlik, Victor Reiner, Anne V. Shepler. The sign representation for Shephard groups. Mathematische Annalen. March 2002, Volume 322, Issue 3, pp 477–492. DOI:10.1007/s002080200001
  2. Coxeter, Regular Complex Polytopes, p. 115
  3. Coxeter, Regular Complex Polytopes, 11.3 Petrie Polygon, a simple h-gon formed by the orbit of the flag (O0,O0O1) for the product of the two generating reflections of any nonstarry regular complex polygon, p1{q}p2.
  4. Complex Regular Polytopes,11.1 Regular complex polygons p.103
  5. Shephard, 1952; "It is from considerations such as these that we derive the notion of the interior of a polytope, and it will be seen that in unitary space where the numbers cannot be so ordered such a concept of interior is impossible. [Para break] Hence ... we have to consider unitary polytopes as configurations."
  6. Coxeter, Regular Complex polytopes, p. 96
  7. Coxeter, Regular Complex Polytopes, p. xiv
  8. Coxeter, Complex Regular Polytopes, p. 177, Table III
  9. Lehrer & Taylor 2009, p. 87
  10. Coxeter, Regular Complex Polytopes, Table IV. The regular polygons. pp. 178–179
  11. Complex Polytopes, 8.9 The Two-Dimensional Case, p. 88
  12. Regular Complex Polytopes, Coxeter, pp. 177-179
  13. 1 2 Coxeter, Regular Complex Polytopes, p. 108
  14. Coxeter, Regular Complex Polytopes, p. 109
  15. Coxeter, Regular Complex Polytopes, p. 111
  16. Coxeter, Regular Complex Polytopes, p. 30 diagram and p. 47 indices for 8 3-edges
  17. 1 2 Coxeter, Regular Complex Polytopes, p. 110
  18. Coxeter, Regular Complex Polytopes, p. 48
  19. Coxeter, Regular Complex Polytopes, p. 49
  20. Coxeter, Regular Complex Polytopes, pp. 116–140.
  21. 1 2 Coxeter, Regular Complex Polytopes, pp. 118–119.
  22. Complex Regular Polytopes, p.29
  23. 1 2 Coxeter, Regular Complex Polytopes, Table V. The nonstarry regular polyhedra and 4-polytopes. p. 180.
  24. Coxeter, Kaleidoscopes — Selected Writings of H.S.M. Coxeter, Paper 25 Surprising relationships among unitary reflection groups, p. 431.
  25. 1 2 Coxeter, Regular Complex Polytopes, p. 131
  26. Coxeter, Regular Complex Polytopes, p. 126
  27. Coxeter, Regular Complex Polytopes, p. 125
  28. Coxeter, Regular Complex Polytopes, Table VI. The regular honeycombs. p. 180.
  29. Complex regular polytope, p.174
  30. Coxeter, Regular Complex Polytopes, Table VI. The regular honeycombs. p. 111, 136.
  31. Coxeter, Regular Complex Polytopes, Table IV. The regular polygons. pp. 178–179
  32. Coxeter, Regular Complex Polytopes, 11.6 Apeirogons, pp. 111-112
  33. Coxeter, Complex Regular Polytopes, p.140
  34. Coxeter, Regular Complex Polytopes, pp. 139-140
  35. Complex Regular Polytopes, p.146
  36. Complex Regular Polytopes, p.141
  37. Coxeter, Regular Complex Polytopes, pp. 118–119, 138.
  38. Coxeter, Regular Complex Polytopes, Chapter 14, Almost regular polytopes, pp. 156–174.
  39. Coxeter, Groups Generated by Unitary Reflections of Period Two, 1956
  40. Coxeter, Finite Groups Generated by Unitary Reflections, 1966, 4. The Graphical Notation, Table of n-dimensional groups generated by n Unitary Reflections. pp. 422-423
  41. 1 2 3 4 5 Coxeter, Groups generated by Unitary Reflections of Period Two (1956), Table III: Some Complex Polytopes, p.413
  42. Coxeter, Complex Regular Polytopes, (1991), 14.6 McMullen's two polyhedral with 84 square faces, pp.166-171
  43. Coxeter, Complex Regular Polytopes, pp.172-173

Related Research Articles

<span class="mw-page-title-main">Cuboctahedron</span> Polyhedron with 8 triangular faces and 6 square faces

A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e., an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral. Its dual polyhedron is the rhombic dodecahedron.

In elementary geometry, a polytope is a geometric object with flat sides (faces). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions n as an n-dimensional polytope or n-polytope. For example, a two-dimensional polygon is a 2-polytope and a three-dimensional polyhedron is a 3-polytope. In this context, "flat sides" means that the sides of a (k + 1)-polytope consist of k-polytopes that may have (k – 1)-polytopes in common.

<span class="mw-page-title-main">Schläfli symbol</span> Notation that defines regular polytopes and tessellations

In geometry, the Schläfli symbol is a notation of the form that defines regular polytopes and tessellations.

<span class="mw-page-title-main">Regular polytope</span> Polytope with highest degree of symmetry

In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. In particular, all its elements or j-faces — cells, faces and so on — are also transitive on the symmetries of the polytope, and are themselves regular polytopes of dimension jn.

In geometry, a polytope or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in the same or reverse order, and with the same angles between corresponding faces.

<span class="mw-page-title-main">Cross-polytope</span> Regular polytope dual to the hypercube in any number of dimensions

In geometry, a cross-polytope, hyperoctahedron, orthoplex, staurotope, or cocube is a regular, convex polytope that exists in n-dimensional Euclidean space. A 2-dimensional cross-polytope is a square, a 3-dimensional cross-polytope is a regular octahedron, and a 4-dimensional cross-polytope is a 16-cell. Its facets are simplexes of the previous dimension, while the cross-polytope's vertex figure is another cross-polytope from the previous dimension.

<span class="mw-page-title-main">16-cell</span> Four-dimensional analog of the octahedron

In geometry, the 16-cell is the regular convex 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,3,4}. It is one of the six regular convex 4-polytopes first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. It is also called C16, hexadecachoron, or hexdecahedroid [sic?].

<span class="mw-page-title-main">Hexagonal tiling</span> Regular tiling of a two-dimensional space

In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of {6,3} or t{3,6} .

<span class="mw-page-title-main">Coxeter–Dynkin diagram</span> Pictorial representation of symmetry

In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing a Coxeter group or sometimes a uniform polytope or uniform tiling constructed from the group.

<span class="mw-page-title-main">Apeirogon</span> Polygon with an infinite number of sides

In geometry, an apeirogon or infinite polygon is a polygon with an infinite number of sides. Apeirogons are the rank 2 case of infinite polytopes. In some literature, the term "apeirogon" may refer only to the regular apeirogon, with an infinite dihedral group of symmetries.

<span class="mw-page-title-main">Skew polygon</span> Polygonal chain whose vertices are not all coplanar

In geometry, a skew polygon is a closed polygonal chain in Euclidean space. It is a figure similar to a polygon except its vertices are not all coplanar. While a polygon is ordinarily defined as a plane figure, the edges and vertices of a skew polygon form a space curve. Skew polygons must have at least four vertices. The interior surface and corresponding area measure of such a polygon is not uniquely defined.

In geometry, a quasiregular polyhedron is a uniform polyhedron that has exactly two kinds of regular faces, which alternate around each vertex. They are vertex-transitive and edge-transitive, hence a step closer to regular polyhedra than the semiregular, which are merely vertex-transitive.

<span class="mw-page-title-main">Regular 4-polytope</span> Four-dimensional analogues of the regular polyhedra in three dimensions

In mathematics, a regular 4-polytope or regular polychoron is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions.

<span class="mw-page-title-main">3-3 duoprism</span>

In the geometry of 4 dimensions, the 3-3 duoprism or triangular duoprism is a four-dimensional convex polytope.

<span class="mw-page-title-main">3-4 duoprism</span>

In geometry of 4 dimensions, a 3-4 duoprism, the second smallest p-q duoprism, is a 4-polytope resulting from the Cartesian product of a triangle and a square.

In geometry, an infinite skew polygon or skew apeirogon is an infinite 2-polytope with vertices that are not all colinear. Infinite zig-zag skew polygons are 2-dimensional infinite skew polygons with vertices alternating between two parallel lines. Infinite helical polygons are 3-dimensional infinite skew polygons with vertices on the surface of a cylinder.

<span class="mw-page-title-main">Regular complex polygon</span> Polygons which have an accompanying imaginary dimension for each real dimension

In geometry, a regular complex polygon is a generalization of a regular polygon in real space to an analogous structure in a complex Hilbert space, where each real dimension is accompanied by an imaginary one. A regular polygon exists in 2 real dimensions, , while a complex polygon exists in two complex dimensions, , which can be given real representations in 4 dimensions, , which then must be projected down to 2 or 3 real dimensions to be visualized. A complex polygon is generalized as a complex polytope in .

<span class="mw-page-title-main">Hessian polyhedron</span>

In geometry, the Hessian polyhedron is a regular complex polyhedron 3{3}3{3}3, , in . It has 27 vertices, 72 3{} edges, and 27 3{3}3 faces. It is self-dual.

<span class="mw-page-title-main">Möbius–Kantor polygon</span>

In geometry, the Möbius–Kantor polygon is a regular complex polygon 3{3}3, , in . 3{3}3 has 8 vertices, and 8 edges. It is self-dual. Every vertex is shared by 3 triangular edges. Coxeter named it a Möbius–Kantor polygon for sharing the complex configuration structure as the Möbius–Kantor configuration, (83).

References

Further reading