This article has problems when viewed in dark mode. Desktop readers can switch to light mode temporarily using the eyeglasses icon at the top of the page. |
In geometry, a complex polytope is a generalization of a polytope in real space to an analogous structure in a complex Hilbert space, where each real dimension is accompanied by an imaginary one.
A complex polytope may be understood as a collection of complex points, lines, planes, and so on, where every point is the junction of multiple lines, every line of multiple planes, and so on.
Precise definitions exist only for the regular complex polytopes, which are configurations. The regular complex polytopes have been completely characterized, and can be described using a symbolic notation developed by Coxeter.
Some complex polytopes which are not fully regular have also been described.
The complex line has one dimension with real coordinates and another with imaginary coordinates. Applying real coordinates to both dimensions is said to give it two dimensions over the real numbers. A real plane, with the imaginary axis labelled as such, is called an Argand diagram. Because of this it is sometimes called the complex plane. Complex 2-space (also sometimes called the complex plane) is thus a four-dimensional space over the reals, and so on in higher dimensions.
A complex n-polytope in complex n-space is the analogue of a real n-polytope in real n-space. However, there is no natural complex analogue of the ordering of points on a real line (or of the associated combinatorial properties). Because of this a complex polytope cannot be seen as a contiguous surface and it does not bound an interior in the way that a real polytope does.
In the case of regular polytopes, a precise definition can be made by using the notion of symmetry. For any regular polytope the symmetry group (here a complex reflection group, called a Shephard group) acts transitively on the flags, that is, on the nested sequences of a point contained in a line contained in a plane and so on.
More fully, say that a collection P of affine subspaces (or flats) of a complex unitary space V of dimension n is a regular complex polytope if it meets the following conditions: [1] [2]
(Here, a flat of dimension −1 is taken to mean the empty set.) Thus, by definition, regular complex polytopes are configurations in complex unitary space.
The regular complex polytopes were discovered by Shephard (1952), and the theory was further developed by Coxeter (1974).
This complex polygon has 8 edges (complex lines), labeled as a..h, and 16 vertices. Four vertices lie in each edge and two edges intersect at each vertex. In the left image, the outlined squares are not elements of the polytope but are included merely to help identify vertices lying in the same complex line. The octagonal perimeter of the left image is not an element of the polytope, but it is a petrie polygon. [3] In the middle image, each edge is represented as a real line and the four vertices in each line can be more clearly seen. | A perspective sketch representing the 16 vertex points as large black dots and the 8 4-edges as bounded squares within each edge. The green path represents the octagonal perimeter of the left hand image. |
A complex polytope exists in the complex space of equivalent dimension. For example, the vertices of a complex polygon are points in the complex plane (a plane in which each point has two complex numbers as its coordinates, not to be confused with the Argand plane of complex numbers), and the edges are complex lines existing as (affine) subspaces of the plane and intersecting at the vertices. Thus, as a one-dimensional complex space, an edge can be given its own coordinate system, within which the points of the edge are each represented by a single complex number.
In a regular complex polytope the vertices incident on the edge are arranged symmetrically about their centroid, which is often used as the origin of the edge's coordinate system (in the real case the centroid is just the midpoint of the edge). The symmetry arises from a complex reflection about the centroid; this reflection will leave the magnitude of any vertex unchanged, but change its argument by a fixed amount, moving it to the coordinates of the next vertex in order. So we may assume (after a suitable choice of scale) that the vertices on the edge satisfy the equation where p is the number of incident vertices. Thus, in the Argand diagram of the edge, the vertex points lie at the vertices of a regular polygon centered on the origin.
Three real projections of regular complex polygon 4{4}2 are illustrated above, with edges a, b, c, d, e, f, g, h. It has 16 vertices, which for clarity have not been individually marked. Each edge has four vertices and each vertex lies on two edges, hence each edge meets four other edges. In the first diagram, each edge is represented by a square. The sides of the square are not parts of the polygon but are drawn purely to help visually relate the four vertices. The edges are laid out symmetrically. (Note that the diagram looks similar to the B4 Coxeter plane projection of the tesseract, but it is structurally different).
The middle diagram abandons octagonal symmetry in favour of clarity. Each edge is shown as a real line, and each meeting point of two lines is a vertex. The connectivity between the various edges is clear to see.
The last diagram gives a flavour of the structure projected into three dimensions: the two cubes of vertices are in fact the same size but are seen in perspective at different distances away in the fourth dimension.
A real 1-dimensional polytope exists as a closed segment in the real line , defined by its two end points or vertices in the line. Its Schläfli symbol is {} .
Analogously, a complex 1-polytope exists as a set of p vertex points in the complex line . These may be represented as a set of points in an Argand diagram (x,y)=x+iy. A regular complex 1-dimensional polytope p{} has p (p ≥ 2) vertex points arranged to form a convex regular polygon {p} in the Argand plane. [4]
Unlike points on the real line, points on the complex line have no natural ordering. Thus, unlike real polytopes, no interior can be defined. [5] Despite this, complex 1-polytopes are often drawn, as here, as a bounded regular polygon in the Argand plane.
A regular real 1-dimensional polytope is represented by an empty Schläfli symbol {}, or Coxeter-Dynkin diagram . The dot or node of the Coxeter-Dynkin diagram itself represents a reflection generator while the circle around the node means the generator point is not on the reflection, so its reflective image is a distinct point from itself. By extension, a regular complex 1-dimensional polytope in has Coxeter-Dynkin diagram , for any positive integer p, 2 or greater, containing p vertices. p can be suppressed if it is 2. It can also be represented by an empty Schläfli symbol p{}, }p{, {}p, or p{2}1. The 1 is a notational placeholder, representing a nonexistent reflection, or a period 1 identity generator. (A 0-polytope, real or complex is a point, and is represented as } {, or 1{2}1.)
The symmetry is denoted by the Coxeter diagram , and can alternatively be described in Coxeter notation as p[], []p or ]p[, p[2]1 or p[1]p. The symmetry is isomorphic to the cyclic group, order p. [6] The subgroups of p[] are any whole divisor d, d[], where d≥2.
A unitary operator generator for is seen as a rotation by 2π/p radians counter clockwise, and a edge is created by sequential applications of a single unitary reflection. A unitary reflection generator for a 1-polytope with p vertices is e2πi/p = cos(2π/p) + i sin(2π/p). When p = 2, the generator is eπi = –1, the same as a point reflection in the real plane.
In higher complex polytopes, 1-polytopes form p-edges. A 2-edge is similar to an ordinary real edge, in that it contains two vertices, but need not exist on a real line.
While 1-polytopes can have unlimited p, finite regular complex polygons, excluding the double prism polygons p{4}2, are limited to 5-edge (pentagonal edges) elements, and infinite regular apeirogons also include 6-edge (hexagonal edges) elements.
Shephard originally devised a modified form of Schläfli's notation for regular polytopes. For a polygon bounded by p1-edges, with a p2-set as vertex figure and overall symmetry group of order g, we denote the polygon as p1(g)p2.
The number of vertices V is then g/p2 and the number of edges E is g/p1.
The complex polygon illustrated above has eight square edges (p1=4) and sixteen vertices (p2=2). From this we can work out that g = 32, giving the modified Schläfli symbol 4(32)2.
A more modern notation p1{q}p2 is due to Coxeter, [7] and is based on group theory. As a symmetry group, its symbol is p1[q]p2.
The symmetry group p1[q]p2 is represented by 2 generators R1, R2, where: R1p1 = R2p2 = I. If q is even, (R2R1)q/2 = (R1R2)q/2. If q is odd, (R2R1)(q−1)/2R2 = (R1R2)(q−1)/2R1. When q is odd, p1=p2.
For 4[4]2 has R14 = R22 = I, (R2R1)2 = (R1R2)2.
For 3[5]3 has R13 = R23 = I, (R2R1)2R2 = (R1R2)2R1.
Coxeter also generalised the use of Coxeter-Dynkin diagrams to complex polytopes, for example the complex polygon p{q}r is represented by and the equivalent symmetry group, p[q]r, is a ringless diagram . The nodes p and r represent mirrors producing p and r images in the plane. Unlabeled nodes in a diagram have implicit 2 labels. For example, a real regular polygon is 2{q}2 or {q} or .
One limitation, nodes connected by odd branch orders must have identical node orders. If they do not, the group will create "starry" polygons, with overlapping element. So and are ordinary, while is starry.
Coxeter enumerated this list of regular complex polygons in . A regular complex polygon, p{q}r or , has p-edges, and r-gonal vertex figures. p{q}r is a finite polytope if (p+r)q>pr(q-2).
Its symmetry is written as p[q]r, called a Shephard group , analogous to a Coxeter group, while also allowing unitary reflections.
For nonstarry groups, the order of the group p[q]r can be computed as . [9]
The Coxeter number for p[q]r is , so the group order can also be computed as . A regular complex polygon can be drawn in orthogonal projection with h-gonal symmetry.
The rank 2 solutions that generate complex polygons are:
Group | G3=G(q,1,1) | G2=G(p,1,2) | G4 | G6 | G5 | G8 | G14 | G9 | G10 | G20 | G16 | G21 | G17 | G18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2[q]2, q=3,4... | p[4]2, p=2,3... | 3[3]3 | 3[6]2 | 3[4]3 | 4[3]4 | 3[8]2 | 4[6]2 | 4[4]3 | 3[5]3 | 5[3]5 | 3[10]2 | 5[6]2 | 5[4]3 | |
Order | 2q | 2p2 | 24 | 48 | 72 | 96 | 144 | 192 | 288 | 360 | 600 | 720 | 1200 | 1800 |
h | q | 2p | 6 | 12 | 24 | 30 | 60 |
Excluded solutions with odd q and unequal p and r are: 6[3]2, 6[3]3, 9[3]3, 12[3]3, ..., 5[5]2, 6[5]2, 8[5]2, 9[5]2, 4[7]2, 9[5]2, 3[9]2, and 3[11]2.
Other whole q with unequal p and r, create starry groups with overlapping fundamental domains: , , , , , and .
The dual polygon of p{q}r is r{q}p. A polygon of the form p{q}p is self-dual. Groups of the form p[2q]2 have a half symmetry p[q]p, so a regular polygon is the same as quasiregular . As well, regular polygon with the same node orders, , have an alternated construction , allowing adjacent edges to be two different colors. [10]
The group order, g, is used to compute the total number of vertices and edges. It will have g/r vertices, and g/p edges. When p=r, the number of vertices and edges are equal. This condition is required when q is odd.
The group p[q]r, , can be represented by two matrices: [11]
Name | R1 | R2 |
---|---|---|
Order | p | r |
Matrix |
With
|
|
| |||||||||||||||||||||||||||
|
|
|
Coxeter enumerated the complex polygons in Table III of Regular Complex Polytopes. [12]
Group | Order | Coxeter number | Polygon | Vertices | Edges | Notes | ||
---|---|---|---|---|---|---|---|---|
G(q,q,2) 2[q]2 = [q] q=2,3,4,... | 2q | q | 2{q}2 | q | q | {} | Real regular polygons Same as Same as if q even |
Group | Order | Coxeter number | Polygon | Vertices | Edges | Notes | |||
---|---|---|---|---|---|---|---|---|---|
G(p,1,2) p[4]2 p=2,3,4,... | 2p2 | 2p | p(2p2)2 | p{4}2 | | p2 | 2p | p{} | same as p{}×p{} or representation as p-p duoprism |
2(2p2)p | 2{4}p | 2p | p2 | {} | representation as p-p duopyramid | ||||
G(2,1,2) 2[4]2 = [4] | 8 | 4 | 2{4}2 = {4} | 4 | 4 | {} | same as {}×{} or Real square | ||
G(3,1,2) 3[4]2 | 18 | 6 | 6(18)2 | 3{4}2 | 9 | 6 | 3{} | same as 3{}×3{} or representation as 3-3 duoprism | |
2(18)3 | 2{4}3 | 6 | 9 | {} | representation as 3-3 duopyramid | ||||
G(4,1,2) 4[4]2 | 32 | 8 | 8(32)2 | 4{4}2 | 16 | 8 | 4{} | same as 4{}×4{} or representation as 4-4 duoprism or {4,3,3} | |
2(32)4 | 2{4}4 | 8 | 16 | {} | representation as 4-4 duopyramid or {3,3,4} | ||||
G(5,1,2) 5[4]2 | 50 | 25 | 5(50)2 | 5{4}2 | 25 | 10 | 5{} | same as 5{}×5{} or representation as 5-5 duoprism | |
2(50)5 | 2{4}5 | 10 | 25 | {} | representation as 5-5 duopyramid | ||||
G(6,1,2) 6[4]2 | 72 | 36 | 6(72)2 | 6{4}2 | 36 | 12 | 6{} | same as 6{}×6{} or representation as 6-6 duoprism | |
2(72)6 | 2{4}6 | 12 | 36 | {} | representation as 6-6 duopyramid | ||||
G4=G(1,1,2) 3[3]3 <2,3,3> | 24 | 6 | 3(24)3 | 3{3}3 | 8 | 8 | 3{} | Möbius–Kantor configuration self-dual, same as representation as {3,3,4} | |
G6 3[6]2 | 48 | 12 | 3(48)2 | 3{6}2 | 24 | 16 | 3{} | same as | |
3{3}2 | starry polygon | ||||||||
2(48)3 | 2{6}3 | 16 | 24 | {} | |||||
2{3}3 | starry polygon | ||||||||
G5 3[4]3 | 72 | 12 | 3(72)3 | 3{4}3 | 24 | 24 | 3{} | self-dual, same as representation as {3,4,3} | |
G8 4[3]4 | 96 | 12 | 4(96)4 | 4{3}4 | 24 | 24 | 4{} | self-dual, same as representation as {3,4,3} | |
G14 3[8]2 | 144 | 24 | 3(144)2 | 3{8}2 | 72 | 48 | 3{} | same as | |
3{8/3}2 | starry polygon, same as | ||||||||
2(144)3 | 2{8}3 | 48 | 72 | {} | |||||
2{8/3}3 | starry polygon | ||||||||
G9 4[6]2 | 192 | 24 | 4(192)2 | 4{6}2 | 96 | 48 | 4{} | same as | |
2(192)4 | 2{6}4 | 48 | 96 | {} | |||||
4{3}2 | 96 | 48 | {} | starry polygon | |||||
2{3}4 | 48 | 96 | {} | starry polygon | |||||
G10 4[4]3 | 288 | 24 | 4(288)3 | 4{4}3 | 96 | 72 | 4{} | ||
12 | 4{8/3}3 | starry polygon | |||||||
24 | 3(288)4 | 3{4}4 | 72 | 96 | 3{} | ||||
12 | 3{8/3}4 | starry polygon | |||||||
G20 3[5]3 | 360 | 30 | 3(360)3 | 3{5}3 | 120 | 120 | 3{} | self-dual, same as representation as {3,3,5} | |
3{5/2}3 | self-dual, starry polygon | ||||||||
G16 5[3]5 | 600 | 30 | 5(600)5 | 5{3}5 | 120 | 120 | 5{} | self-dual, same as representation as {3,3,5} | |
10 | 5{5/2}5 | self-dual, starry polygon | |||||||
G21 3[10]2 | 720 | 60 | 3(720)2 | 3{10}2 | 360 | 240 | 3{} | same as | |
3{5}2 | starry polygon | ||||||||
3{10/3}2 | starry polygon, same as | ||||||||
3{5/2}2 | starry polygon | ||||||||
2(720)3 | 2{10}3 | 240 | 360 | {} | |||||
2{5}3 | starry polygon | ||||||||
2{10/3}3 | starry polygon | ||||||||
2{5/2}3 | starry polygon | ||||||||
G17 5[6]2 | 1200 | 60 | 5(1200)2 | 5{6}2 | 600 | 240 | 5{} | same as | |
20 | 5{5}2 | starry polygon | |||||||
20 | 5{10/3}2 | starry polygon | |||||||
60 | 5{3}2 | starry polygon | |||||||
60 | 2(1200)5 | 2{6}5 | 240 | 600 | {} | ||||
20 | 2{5}5 | starry polygon | |||||||
20 | 2{10/3}5 | starry polygon | |||||||
60 | 2{3}5 | starry polygon | |||||||
G18 5[4]3 | 1800 | 60 | 5(1800)3 | 5{4}3 | 600 | 360 | 5{} | ||
15 | 5{10/3}3 | starry polygon | |||||||
30 | 5{3}3 | starry polygon | |||||||
30 | 5{5/2}3 | starry polygon | |||||||
60 | 3(1800)5 | 3{4}5 | 360 | 600 | 3{} | ||||
15 | 3{10/3}5 | starry polygon | |||||||
30 | 3{3}5 | starry polygon | |||||||
30 | 3{5/2}5 | starry polygon |
Polygons of the form p{2r}q can be visualized by q color sets of p-edge. Each p-edge is seen as a regular polygon, while there are no faces.
Polygons of the form 2{4}q are called generalized orthoplexes. They share vertices with the 4D q-q duopyramids, vertices connected by 2-edges.
Polygons of the form p{4}2 are called generalized hypercubes (squares for polygons). They share vertices with the 4D p-p duoprisms, vertices connected by p-edges. Vertices are drawn in green, and p-edges are drawn in alternate colors, red and blue. The perspective is distorted slightly for odd dimensions to move overlapping vertices from the center.
Polygons of the form p{r}p have equal number of vertices and edges. They are also self-dual.
In general, a regular complex polytope is represented by Coxeter as p{z1}q{z2}r{z3}s... or Coxeter diagram ..., having symmetry p[z1]q[z2]r[z3]s... or .... [20]
There are infinite families of regular complex polytopes that occur in all dimensions, generalizing the hypercubes and cross polytopes in real space. Shephard's "generalized orthotope" generalizes the hypercube; it has symbol given by γp
n = p{4}2{3}2...2{3}2 and diagram .... Its symmetry group has diagram p[4]2[3]2...2[3]2; in the Shephard–Todd classification, this is the group G(p, 1, n) generalizing the signed permutation matrices. Its dual regular polytope, the "generalized cross polytope", is represented by the symbol βp
n = 2{3}2{3}2...2{4}p and diagram .... [21]
A 1-dimensional regular complex polytope in is represented as , having p vertices, with its real representation a regular polygon, {p}. Coxeter also gives it symbol γp
1 or βp
1 as 1-dimensional generalized hypercube or cross polytope. Its symmetry is p[] or , a cyclic group of order p. In a higher polytope, p{} or represents a p-edge element, with a 2-edge, {} or , representing an ordinary real edge between two vertices. [21]
A dual complex polytope is constructed by exchanging k and (n-1-k)-elements of an n-polytope. For example, a dual complex polygon has vertices centered on each edge, and new edges are centered at the old vertices. A v-valence vertex creates a new v-edge, and e-edges become e-valence vertices. [22] The dual of a regular complex polytope has a reversed symbol. Regular complex polytopes with symmetric symbols, i.e. p{q}p, p{q}r{q}p, p{q}r{s}r{q}p, etc. are self dual.
Coxeter enumerated this list of nonstarry regular complex polyhedra in , including the 5 platonic solids in . [23]
A regular complex polyhedron, p{n1}q{n2}r or , has faces, edges, and vertex figures.
A complex regular polyhedron p{n1}q{n2}r requires both g1 = order(p[n1]q) and g2 = order(q[n2]r) be finite.
Given g = order(p[n1]q[n2]r), the number of vertices is g/g2, and the number of faces is g/g1. The number of edges is g/pr.
Space | Group | Order | Coxeter number | Polygon | Vertices | Edges | Faces | Vertex figure | Van Oss polygon | Notes | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G(1,1,3) 2[3]2[3]2 = [3,3] | 24 | 4 | α3 = 2{3}2{3}2 = {3,3} | 4 | 6 | {} | 4 | {3} | {3} | none | Real tetrahedron Same as | ||
G23 2[3]2[5]2 = [3,5] | 120 | 10 | 2{3}2{5}2 = {3,5} | 12 | 30 | {} | 20 | {3} | {5} | none | Real icosahedron | ||
2{5}2{3}2 = {5,3} | 20 | 30 | {} | 12 | {5} | {3} | none | Real dodecahedron | |||||
G(2,1,3) 2[3]2[4]2 = [3,4] | 48 | 6 | β2 3 = β3 = {3,4} | 6 | 12 | {} | 8 | {3} | {4} | {4} | Real octahedron Same as {}+{}+{}, order 8 Same as , order 24 | ||
γ2 3 = γ3 = {4,3} | 8 | 12 | {} | 6 | {4} | {3} | none | Real cube Same as {}×{}×{} or | |||||
G(p,1,3) 2[3]2[4]p p=2,3,4,... | 6p3 | 3p | βp 3 = 2{3}2{4}p | | 3p | 3p2 | {} | p3 | {3} | 2{4}p | 2{4}p | Generalized octahedron Same as p{}+p{}+p{}, order p3 Same as , order 6p2 | |
γp 3 = p{4}2{3}2 | p3 | 3p2 | p{} | 3p | p{4}2 | {3} | none | Generalized cube Same as p{}×p{}×p{} or | |||||
G(3,1,3) 2[3]2[4]3 | 162 | 9 | β3 3 = 2{3}2{4}3 | 9 | 27 | {} | 27 | {3} | 2{4}3 | 2{4}3 | Same as 3{}+3{}+3{}, order 27 Same as , order 54 | ||
γ3 3 = 3{4}2{3}2 | 27 | 27 | 3{} | 9 | 3{4}2 | {3} | none | Same as 3{}×3{}×3{} or | |||||
G(4,1,3) 2[3]2[4]4 | 384 | 12 | β4 3 = 2{3}2{4}4 | 12 | 48 | {} | 64 | {3} | 2{4}4 | 2{4}4 | Same as 4{}+4{}+4{}, order 64 Same as , order 96 | ||
γ4 3 = 4{4}2{3}2 | 64 | 48 | 4{} | 12 | 4{4}2 | {3} | none | Same as 4{}×4{}×4{} or | |||||
G(5,1,3) 2[3]2[4]5 | 750 | 15 | β5 3 = 2{3}2{4}5 | 15 | 75 | {} | 125 | {3} | 2{4}5 | 2{4}5 | Same as 5{}+5{}+5{}, order 125 Same as , order 150 | ||
γ5 3 = 5{4}2{3}2 | 125 | 75 | 5{} | 15 | 5{4}2 | {3} | none | Same as 5{}×5{}×5{} or | |||||
G(6,1,3) 2[3]2[4]6 | 1296 | 18 | β6 3 = 2{3}2{4}6 | 36 | 108 | {} | 216 | {3} | 2{4}6 | 2{4}6 | Same as 6{}+6{}+6{}, order 216 Same as , order 216 | ||
γ6 3 = 6{4}2{3}2 | 216 | 108 | 6{} | 18 | 6{4}2 | {3} | none | Same as 6{}×6{}×6{} or | |||||
G25 3[3]3[3]3 | 648 | 9 | 3{3}3{3}3 | 27 | 72 | 3{} | 27 | 3{3}3 | 3{3}3 | 3{4}2 | Same as . representation as 221 Hessian polyhedron | ||
G26 2[4]3[3]3 | 1296 | 18 | 2{4}3{3}3 | 54 | 216 | {} | 72 | 2{4}3 | 3{3}3 | {6} | |||
3{3}3{4}2 | 72 | 216 | 3{} | 54 | 3{3}3 | 3{4}2 | 3{4}3 | Same as [24] representation as 122 |
Generalized octahedra have a regular construction as and quasiregular form as . All elements are simplexes.
Generalized cubes have a regular construction as and prismatic construction as , a product of three p-gonal 1-polytopes. Elements are lower dimensional generalized cubes.
Coxeter enumerated this list of nonstarry regular complex 4-polytopes in , including the 6 convex regular 4-polytopes in . [23]
Space | Group | Order | Coxeter number | Polytope | Vertices | Edges | Faces | Cells | Van Oss polygon | Notes |
---|---|---|---|---|---|---|---|---|---|---|
G(1,1,4) 2[3]2[3]2[3]2 = [3,3,3] | 120 | 5 | α4 = 2{3}2{3}2{3}2 = {3,3,3} | 5 | 10 {} | 10 {3} | 5 {3,3} | none | Real 5-cell (simplex) | |
G28 2[3]2[4]2[3]2 = [3,4,3] | 1152 | 12 | 2{3}2{4}2{3}2 = {3,4,3} | 24 | 96 {} | 96 {3} | 24 {3,4} | {6} | Real 24-cell | |
G30 2[3]2[3]2[5]2 = [3,3,5] | 14400 | 30 | 2{3}2{3}2{5}2 = {3,3,5} | 120 | 720 {} | 1200 {3} | 600 {3,3} | {10} | Real 600-cell | |
2{5}2{3}2{3}2 = {5,3,3} | 600 | 1200 {} | 720 {5} | 120 {5,3} | Real 120-cell | |||||
G(2,1,4) 2[3]2[3]2[4]p =[3,3,4] | 384 | 8 | β2 4 = β4 = {3,3,4} | 8 | 24 {} | 32 {3} | 16 {3,3} | {4} | Real 16-cell Same as , order 192 | |
γ2 4 = γ4 = {4,3,3} | 16 | 32 {} | 24 {4} | 8 {4,3} | none | Real tesseract Same as {}4 or , order 16 | ||||
G(p,1,4) 2[3]2[3]2[4]p p=2,3,4,... | 24p4 | 4p | βp 4 = 2{3}2{3}2{4}p | 4p | 6p2 {} | 4p3 {3} | p4 {3,3} | 2{4}p | Generalized 4-orthoplex Same as , order 24p3 | |
γp 4 = p{4}2{3}2{3}2 | p4 | 4p3 p{} | 6p2 p{4}2 | 4p p{4}2{3}2 | none | Generalized tesseract Same as p{}4 or , order p4 | ||||
G(3,1,4) 2[3]2[3]2[4]3 | 1944 | 12 | β3 4 = 2{3}2{3}2{4}3 | 12 | 54 {} | 108 {3} | 81 {3,3} | 2{4}3 | Generalized 4-orthoplex Same as , order 648 | |
γ3 4 = 3{4}2{3}2{3}2 | 81 | 108 3{} | 54 3{4}2 | 12 3{4}2{3}2 | none | Same as 3{}4 or , order 81 | ||||
G(4,1,4) 2[3]2[3]2[4]4 | 6144 | 16 | β4 4 = 2{3}2{3}2{4}4 | 16 | 96 {} | 256 {3} | 64 {3,3} | 2{4}4 | Same as , order 1536 | |
γ4 4 = 4{4}2{3}2{3}2 | 256 | 256 4{} | 96 4{4}2 | 16 4{4}2{3}2 | none | Same as 4{}4 or , order 256 | ||||
G(5,1,4) 2[3]2[3]2[4]5 | 15000 | 20 | β5 4 = 2{3}2{3}2{4}5 | 20 | 150 {} | 500 {3} | 625 {3,3} | 2{4}5 | Same as , order 3000 | |
γ5 4 = 5{4}2{3}2{3}2 | 625 | 500 5{} | 150 5{4}2 | 20 5{4}2{3}2 | none | Same as 5{}4 or , order 625 | ||||
G(6,1,4) 2[3]2[3]2[4]6 | 31104 | 24 | β6 4 = 2{3}2{3}2{4}6 | 24 | 216 {} | 864 {3} | 1296 {3,3} | 2{4}6 | Same as , order 5184 | |
γ6 4 = 6{4}2{3}2{3}2 | 1296 | 864 6{} | 216 6{4}2 | 24 6{4}2{3}2 | none | Same as 6{}4 or , order 1296 | ||||
G32 3[3]3[3]3[3]3 | 155520 | 30 | 3{3}3{3}3{3}3 | 240 | 2160 3{} | 2160 3{3}3 | 240 3{3}3{3}3 | 3{4}3 | Witting polytope representation as 421 |
Generalized 4-orthoplexes have a regular construction as and quasiregular form as . All elements are simplexes.
Generalized tesseracts have a regular construction as and prismatic construction as , a product of four p-gonal 1-polytopes. Elements are lower dimensional generalized cubes.
Regular complex 5-polytopes in or higher exist in three families, the real simplexes and the generalized hypercube, and orthoplex.
Space | Group | Order | Polytope | Vertices | Edges | Faces | Cells | 4-faces | Van Oss polygon | Notes |
---|---|---|---|---|---|---|---|---|---|---|
G(1,1,5) = [3,3,3,3] | 720 | α5 = {3,3,3,3} | 6 | 15 {} | 20 {3} | 15 {3,3} | 6 {3,3,3} | none | Real 5-simplex | |
G(2,1,5) =[3,3,3,4] | 3840 | β2 5 = β5 = {3,3,3,4} | 10 | 40 {} | 80 {3} | 80 {3,3} | 32 {3,3,3} | {4} | Real 5-orthoplex Same as , order 1920 | |
γ2 5 = γ5 = {4,3,3,3} | 32 | 80 {} | 80 {4} | 40 {4,3} | 10 {4,3,3} | none | Real 5-cube Same as {}5 or , order 32 | |||
G(p,1,5) 2[3]2[3]2[3]2[4]p | 120p5 | βp 5 = 2{3}2{3}2{3}2{4}p | 5p | 10p2 {} | 10p3 {3} | 5p4 {3,3} | p5 {3,3,3} | 2{4}p | Generalized 5-orthoplex Same as , order 120p4 | |
γp 5 = p{4}2{3}2{3}2{3}2 | p5 | 5p4 p{} | 10p3 p{4}2 | 10p2 p{4}2{3}2 | 5p p{4}2{3}2{3}2 | none | Generalized 5-cube Same as p{}5 or , order p5 | |||
G(3,1,5) 2[3]2[3]2[3]2[4]3 | 29160 | β3 5 = 2{3}2{3}2{3}2{4}3 | 15 | 90 {} | 270 {3} | 405 {3,3} | 243 {3,3,3} | 2{4}3 | Same as , order 9720 | |
γ3 5 = 3{4}2{3}2{3}2{3}2 | 243 | 405 3{} | 270 3{4}2 | 90 3{4}2{3}2 | 15 3{4}2{3}2{3}2 | none | Same as 3{}5 or , order 243 | |||
G(4,1,5) 2[3]2[3]2[3]2[4]4 | 122880 | β4 5 = 2{3}2{3}2{3}2{4}4 | 20 | 160 {} | 640 {3} | 1280 {3,3} | 1024 {3,3,3} | 2{4}4 | Same as , order 30720 | |
γ4 5 = 4{4}2{3}2{3}2{3}2 | 1024 | 1280 4{} | 640 4{4}2 | 160 4{4}2{3}2 | 20 4{4}2{3}2{3}2 | none | Same as 4{}5 or , order 1024 | |||
G(5,1,5) 2[3]2[3]2[3]2[4]5 | 375000 | β5 5 = 2{3}2{3}2{3}2{5}5 | 25 | 250 {} | 1250 {3} | 3125 {3,3} | 3125 {3,3,3} | 2{5}5 | Same as , order 75000 | |
γ5 5 = 5{4}2{3}2{3}2{3}2 | 3125 | 3125 5{} | 1250 5{5}2 | 250 5{5}2{3}2 | 25 5{4}2{3}2{3}2 | none | Same as 5{}5 or , order 3125 | |||
G(6,1,5) 2[3]2[3]2[3]2[4]6 | 933210 | β6 5 = 2{3}2{3}2{3}2{4}6 | 30 | 360 {} | 2160 {3} | 6480 {3,3} | 7776 {3,3,3} | 2{4}6 | Same as , order 155520 | |
γ6 5 = 6{4}2{3}2{3}2{3}2 | 7776 | 6480 6{} | 2160 6{4}2 | 360 6{4}2{3}2 | 30 6{4}2{3}2{3}2 | none | Same as 6{}5 or , order 7776 |
Generalized 5-orthoplexes have a regular construction as and quasiregular form as . All elements are simplexes.
Generalized 5-cubes have a regular construction as and prismatic construction as , a product of five p-gonal 1-polytopes. Elements are lower dimensional generalized cubes.
Space | Group | Order | Polytope | Vertices | Edges | Faces | Cells | 4-faces | 5-faces | Van Oss polygon | Notes |
---|---|---|---|---|---|---|---|---|---|---|---|
G(1,1,6) = [3,3,3,3,3] | 720 | α6 = {3,3,3,3,3} | 7 | 21 {} | 35 {3} | 35 {3,3} | 21 {3,3,3} | 7 {3,3,3,3} | none | Real 6-simplex | |
G(2,1,6) [3,3,3,4] | 46080 | β2 6 = β6 = {3,3,3,4} | 12 | 60 {} | 160 {3} | 240 {3,3} | 192 {3,3,3} | 64 {3,3,3,3} | {4} | Real 6-orthoplex Same as , order 23040 | |
γ2 6 = γ6 = {4,3,3,3} | 64 | 192 {} | 240 {4} | 160 {4,3} | 60 {4,3,3} | 12 {4,3,3,3} | none | Real 6-cube Same as {}6 or , order 64 | |||
G(p,1,6) 2[3]2[3]2[3]2[4]p | 720p6 | βp 6 = 2{3}2{3}2{3}2{4}p | 6p | 15p2 {} | 20p3 {3} | 15p4 {3,3} | 6p5 {3,3,3} | p6 {3,3,3,3} | 2{4}p | Generalized 6-orthoplex Same as , order 720p5 | |
γp 6 = p{4}2{3}2{3}2{3}2 | p6 | 6p5 p{} | 15p4 p{4}2 | 20p3 p{4}2{3}2 | 15p2 p{4}2{3}2{3}2 | 6p p{4}2{3}2{3}2{3}2 | none | Generalized 6-cube Same as p{}6 or , order p6 |
Generalized 6-orthoplexes have a regular construction as and quasiregular form as . All elements are simplexes.
Generalized 6-cubes have a regular construction as and prismatic construction as , a product of six p-gonal 1-polytopes. Elements are lower dimensional generalized cubes.
Coxeter enumerated this list of nonstarry regular complex apeirotopes or honeycombs. [28]
For each dimension there are 12 apeirotopes symbolized as δp,r
n+1 exists in any dimensions , or if p=q=2. Coxeter calls these generalized cubic honeycombs for n>2. [29]
Each has proportional element counts given as:
The only regular complex 1-polytope is ∞{}, or . Its real representation is an apeirogon, {∞}, or .
Rank 2 complex apeirogons have symmetry p[q]r, where 1/p + 2/q + 1/r = 1. Coxeter expresses them as δp,r
2 where q is constrained to satisfy q = 2/(1 – (p + r)/pr). [30]
There are 8 solutions:
2[∞]2 | 3[12]2 | 4[8]2 | 6[6]2 | 3[6]3 | 6[4]3 | 4[4]4 | 6[3]6 |
There are two excluded solutions odd q and unequal p and r: 10[5]2 and 12[3]4, or and .
A regular complex apeirogon p{q}r has p-edges and r-gonal vertex figures. The dual apeirogon of p{q}r is r{q}p. An apeirogon of the form p{q}p is self-dual. Groups of the form p[2q]2 have a half symmetry p[q]p, so a regular apeirogon is the same as quasiregular . [31]
Apeirogons can be represented on the Argand plane share four different vertex arrangements. Apeirogons of the form 2{q}r have a vertex arrangement as {q/2,p}. The form p{q}2 have vertex arrangement as r{p,q/2}. Apeirogons of the form p{4}r have vertex arrangements {p,r}.
Including affine nodes, and , there are 3 more infinite solutions: ∞[2]∞, ∞[4]2, ∞[3]3, and , , and . The first is an index 2 subgroup of the second. The vertices of these apeirogons exist in .
Space | Group | Apeirogon | Edge | rep. [32] | Picture | Notes | |
---|---|---|---|---|---|---|---|
2[∞]2 = [∞] | δ2,2 2 = {∞} | | {} | Real apeirogon Same as | |||
/ | ∞[4]2 | ∞{4}2 | ∞{} | {4,4} | Same as | ||
∞[3]3 | ∞{3}3 | ∞{} | {3,6} | Same as | |||
p[q]r | δp,r 2 = p{q}r | p{} | |||||
3[12]2 | δ3,2 2 = 3{12}2 | 3{} | r{3,6} | Same as | |||
δ2,3 2 = 2{12}3 | {} | {6,3} | |||||
3[6]3 | δ3,3 2 = 3{6}3 | 3{} | {3,6} | Same as | |||
4[8]2 | δ4,2 2 = 4{8}2 | 4{} | {4,4} | Same as | |||
δ2,4 2 = 2{8}4 | {} | {4,4} | |||||
4[4]4 | δ4,4 2 = 4{4}4 | 4{} | {4,4} | Same as | |||
6[6]2 | δ6,2 2 = 6{6}2 | 6{} | r{3,6} | Same as | |||
δ2,6 2 = 2{6}6 | {} | {3,6} | |||||
6[4]3 | δ6,3 2 = 6{4}3 | 6{} | {6,3} | ||||
δ3,6 2 = 3{4}6 | 3{} | {3,6} | |||||
6[3]6 | δ6,6 2 = 6{3}6 | 6{} | {3,6} | Same as |
There are 22 regular complex apeirohedra, of the form p{a}q{b}r. 8 are self-dual (p=r and a=b), while 14 exist as dual polytope pairs. Three are entirely real (p=q=r=2).
Coxeter symbolizes 12 of them as δp,r
3 or p{4}2{4}r is the regular form of the product apeirotope δp,r
2 × δp,r
2 or p{q}r × p{q}r, where q is determined from p and r.
is the same as , as well as , for p,r=2,3,4,6. Also = . [33]
Space | Group | Apeirohedron | Vertex | Edge | Face | van Oss apeirogon | Notes | |||
---|---|---|---|---|---|---|---|---|---|---|
2[3]2[4]∞ | ∞{4}2{3}2 | ∞{} | ∞{4}2 | Same as ∞{}×∞{}×∞{} or Real representation {4,3,4} | ||||||
p[4]2[4]r | p{4}2{4}r | | p2 | 2pr | p{} | r2 | p{4}2 | 2{q}r | Same as , p,r=2,3,4,6 | |
[4,4] | δ2,2 3 = {4,4} | 4 | 8 | {} | 4 | {4} | {∞} | Real square tiling Same as or or | ||
3[4]2[4]2 3[4]2[4]3 4[4]2[4]2 4[4]2[4]4 6[4]2[4]2 6[4]2[4]3 6[4]2[4]6 | 3{4}2{4}2 2{4}2{4}3 3{4}2{4}3 4{4}2{4}2 2{4}2{4}4 4{4}2{4}4 6{4}2{4}2 2{4}2{4}6 6{4}2{4}3 3{4}2{4}6 6{4}2{4}6 | 9 4 9 16 4 16 36 4 36 9 36 | 12 12 18 16 16 32 24 24 36 36 72 | 3{} {} 3{} 4{} {} 4{} 6{} {} 6{} 3{} 6{} | 4 9 9 4 16 16 4 36 9 36 36 | 3{4}2 {4} 3{4}2 4{4}2 {4} 4{4}2 6{4}2 {4} 6{4}2 3{4}2 6{4}2 | p{q}r | Same as or or Same as Same as Same as or or Same as Same as Same as or or Same as Same as Same as Same as |
Space | Group | Apeirohedron | Vertex | Edge | Face | van Oss apeirogon | Notes | |||
---|---|---|---|---|---|---|---|---|---|---|
2[4]r[4]2 | 2{4}r{4}2 | | 2 | {} | 2 | p{4}2' | 2{4}r | Same as and , r=2,3,4,6 | ||
[4,4] | {4,4} | 2 | 4 | {} | 2 | {4} | {∞} | Same as and | ||
2[4]3[4]2 2[4]4[4]2 2[4]6[4]2 | 2{4}3{4}2 2{4}4{4}2 2{4}6{4}2 | 2 | 9 16 36 | {} | 2 | 2{4}3 2{4}4 2{4}6 | 2{q}r | Same as and Same as and Same as and [34] |
Space | Group | Apeirohedron | Vertex | Edge | Face | van Oss apeirogon | Notes | |||
---|---|---|---|---|---|---|---|---|---|---|
2[6]2[3]2 = [6,3] | {3,6} | | 1 | 3 | {} | 2 | {3} | {∞} | Real triangular tiling | |
{6,3} | 2 | 3 | {} | 1 | {6} | none | Real hexagonal tiling | |||
3[4]3[3]3 | 3{3}3{4}3 | 1 | 8 | 3{} | 3 | 3{3}3 | 3{4}6 | Same as | ||
3{4}3{3}3 | 3 | 8 | 3{} | 1 | 3{4}3 | 3{12}2 | ||||
4[3]4[3]4 | 4{3}4{3}4 | 1 | 6 | 4{} | 1 | 4{3}4 | 4{4}4 | Self-dual, same as | ||
4[3]4[4]2 | 4{3}4{4}2 | 1 | 12 | 4{} | 3 | 4{3}4 | 2{8}4 | Same as | ||
2{4}4{3}4 | 3 | 12 | {} | 1 | 2{4}4 | 4{4}4 |
There are 16 regular complex apeirotopes in . Coxeter expresses 12 of them by δp,r
3 where q is constrained to satisfy q = 2/(1 – (p + r)/pr). These can also be decomposed as product apeirotopes: = . The first case is the cubic honeycomb.
Space | Group | 3-apeirotope | Vertex | Edge | Face | Cell | van Oss apeirogon | Notes |
---|---|---|---|---|---|---|---|---|
p[4]2[3]2[4]r | δp,r 3 = p{4}2{3}2{4}r | p{} | p{4}2 | p{4}2{3}2 | p{q}r | Same as | ||
2[4]2[3]2[4]2 =[4,3,4] | δ2,2 3 = 2{4}2{3}2{4}2 | {} | {4} | {4,3} | Cubic honeycomb Same as or or | |||
3[4]2[3]2[4]2 | δ3,2 3 = 3{4}2{3}2{4}2 | 3{} | 3{4}2 | 3{4}2{3}2 | Same as or or | |||
δ2,3 3 = 2{4}2{3}2{4}3 | {} | {4} | {4,3} | Same as | ||||
3[4]2[3]2[4]3 | δ3,3 3 = 3{4}2{3}2{4}3 | 3{} | 3{4}2 | 3{4}2{3}2 | Same as | |||
4[4]2[3]2[4]2 | δ4,2 3 = 4{4}2{3}2{4}2 | 4{} | 4{4}2 | 4{4}2{3}2 | Same as or or | |||
δ2,4 3 = 2{4}2{3}2{4}4 | {} | {4} | {4,3} | Same as | ||||
4[4]2[3]2[4]4 | δ4,4 3 = 4{4}2{3}2{4}4 | 4{} | 4{4}2 | 4{4}2{3}2 | Same as | |||
6[4]2[3]2[4]2 | δ6,2 3 = 6{4}2{3}2{4}2 | 6{} | 6{4}2 | 6{4}2{3}2 | Same as or or | |||
δ2,6 3 = 2{4}2{3}2{4}6 | {} | {4} | {4,3} | Same as | ||||
6[4]2[3]2[4]3 | δ6,3 3 = 6{4}2{3}2{4}3 | 6{} | 6{4}2 | 6{4}2{3}2 | Same as | |||
δ3,6 3 = 3{4}2{3}2{4}6 | 3{} | 3{4}2 | 3{4}2{3}2 | Same as | ||||
6[4]2[3]2[4]6 | δ6,6 3 = 6{4}2{3}2{4}6 | 6{} | 6{4}2 | 6{4}2{3}2 | Same as |
Space | Group | 3-apeirotope | Vertex | Edge | Face | Cell | van Oss apeirogon | Notes |
---|---|---|---|---|---|---|---|---|
2[4]3[3]3[3]3 | 3{3}3{3}3{4}2 | 1 | 24 3{} | 27 3{3}3 | 2 3{3}3{3}3 | 3{4}6 | Same as | |
2{4}3{3}3{3}3 | 2 | 27 {} | 24 2{4}3 | 1 2{4}3{3}3 | 2{12}3 | |||
2[3]2[4]3[3]3 | 2{3}2{4}3{3}3 | 1 | 27 {} | 72 2{3}2 | 8 2{3}2{4}3 | 2{6}6 | ||
3{3}3{4}2{3}2 | 8 | 72 3{} | 27 3{3}3 | 1 3{3}3{4}2 | 3{6}3 | Same as or |
There are 15 regular complex apeirotopes in . Coxeter expresses 12 of them by δp,r
4 where q is constrained to satisfy q = 2/(1 – (p + r)/pr). These can also be decomposed as product apeirotopes: = . The first case is the tesseractic honeycomb. The 16-cell honeycomb and 24-cell honeycomb are real solutions. The last solution is generated has Witting polytope elements.
Space | Group | 4-apeirotope | Vertex | Edge | Face | Cell | 4-face | van Oss apeirogon | Notes |
---|---|---|---|---|---|---|---|---|---|
p[4]2[3]2[3]2[4]r | δp,r 4 = p{4}2{3}2{3}2{4}r | p{} | p{4}2 | p{4}2{3}2 | p{4}2{3}2{3}2 | p{q}r | Same as | ||
2[4]2[3]2[3]2[4]2 | δ2,2 4 = {4,3,3,3} | {} | {4} | {4,3} | {4,3,3} | {∞} | Tesseractic honeycomb Same as | ||
2[3]2[4]2[3]2[3]2 =[3,4,3,3] | {3,3,4,3} | 1 | 12 {} | 32 {3} | 24 {3,3} | 3 {3,3,4} | Real 16-cell honeycomb Same as | ||
{3,4,3,3} | 3 | 24 {} | 32 {3} | 12 {3,4} | 1 {3,4,3} | Real 24-cell honeycomb Same as or | |||
3[3]3[3]3[3]3[3]3 | 3{3}3{3}3{3}3{3}3 | 1 | 80 3{} | 270 3{3}3 | 80 3{3}3{3}3 | 1 3{3}3{3}3{3}3 | 3{4}6 | representation 521 |
There are only 12 regular complex apeirotopes in or higher, [35] expressed δp,r
n where q is constrained to satisfy q = 2/(1 – (p + r)/pr). These can also be decomposed a product of n apeirogons: ... = ... . The first case is the real hypercube honeycomb.
Space | Group | 5-apeirotopes | Vertices | Edge | Face | Cell | 4-face | 5-face | van Oss apeirogon | Notes |
---|---|---|---|---|---|---|---|---|---|---|
p[4]2[3]2[3]2[3]2[4]r | δp,r 5 = p{4}2{3}2{3}2{3}2{4}r | p{} | p{4}2 | p{4}2{3}2 | p{4}2{3}2{3}2 | p{4}2{3}2{3}2{3}2 | p{q}r | Same as | ||
2[4]2[3]2[3]2[3]2[4]2 =[4,3,3,3,4] | δ2,2 5 = {4,3,3,3,4} | {} | {4} | {4,3} | {4,3,3} | {4,3,3,3} | {∞} | 5-cubic honeycomb Same as |
A van Oss polygon is a regular polygon in the plane (real plane , or unitary plane ) in which both an edge and the centroid of a regular polytope lie, and formed of elements of the polytope. Not all regular polytopes have Van Oss polygons.
For example, the van Oss polygons of a real octahedron are the three squares whose planes pass through its center. In contrast a cube does not have a van Oss polygon because the edge-to-center plane cuts diagonally across two square faces and the two edges of the cube which lie in the plane do not form a polygon.
Infinite honeycombs also have van Oss apeirogons. For example, the real square tiling and triangular tiling have apeirogons {∞} van Oss apeirogons. [36]
If it exists, the van Oss polygon of regular complex polytope of the form p{q}r{s}t... has p-edges.
Complex product polygon or {}×5{} has 10 vertices connected by 5 2-edges and 2 5-edges, with its real representation as a 3-dimensional pentagonal prism. | The dual polygon,{}+5{} has 7 vertices centered on the edges of the original, connected by 10 edges. Its real representation is a pentagonal bipyramid. |
Some complex polytopes can be represented as Cartesian products. These product polytopes are not strictly regular since they'll have more than one facet type, but some can represent lower symmetry of regular forms if all the orthogonal polytopes are identical. For example, the product p{}×p{} or of two 1-dimensional polytopes is the same as the regular p{4}2 or . More general products, like p{}×q{} have real representations as the 4-dimensional p-q duoprisms. The dual of a product polytope can be written as a sum p{}+q{} and have real representations as the 4-dimensional p-q duopyramid. The p{}+p{} can have its symmetry doubled as a regular complex polytope 2{4}p or .
Similarly, a complex polyhedron can be constructed as a triple product: p{}×p{}×p{} or is the same as the regular generalized cube, p{4}2{3}2 or , as well as product p{4}2×p{} or . [37]
A quasiregular polygon is a truncation of a regular polygon. A quasiregular polygon contains alternate edges of the regular polygons and . The quasiregular polygon has p vertices on the p-edges of the regular form.
There are 7 quasiregular complex apeirogons which alternate edges of a regular apeirogon and its regular dual. The vertex arrangements of these apeirogon have real representations with the regular and uniform tilings of the Euclidean plane. The last column for the 6{3}6 apeirogon is not only self-dual, but the dual coincides with itself with overlapping hexagonal edges, thus their quasiregular form also has overlapping hexagonal edges, so it can't be drawn with two alternating colors like the others. The symmetry of the self-dual families can be doubled, so creating an identical geometry as the regular forms: =
p[q]r | 4[8]2 | 4[4]4 | 6[6]2 | 6[4]3 | 3[12]2 | 3[6]3 | 6[3]6 |
---|---|---|---|---|---|---|---|
Regular or p{q}r | | | | | | | |
Quasiregular | | = | | | | = | = |
Regular dual or r{q}p | | | | | | | |
Like real polytopes, a complex quasiregular polyhedron can be constructed as a rectification (a complete truncation) of a regular polyhedron. Vertices are created mid-edge of the regular polyhedron and faces of the regular polyhedron and its dual are positioned alternating across common edges.
For example, a p-generalized cube, , has p3 vertices, 3p2 edges, and 3pp-generalized square faces, while the p-generalized octahedron, , has 3p vertices, 3p2 edges and p3 triangular faces. The middle quasiregular form p-generalized cuboctahedron, , has 3p2 vertices, 3p3 edges, and 3p+p3 faces.
Also the rectification of the Hessian polyhedron , is , a quasiregular form sharing the geometry of the regular complex polyhedron .
Generalized cube/octahedra | Hessian polyhedron | |||||
---|---|---|---|---|---|---|
p=2 (real) | p=3 | p=4 | p=5 | p=6 | ||
Generalized cubes (regular) | Cube , 8 vertices, 12 2-edges, and 6 faces. | , 27 vertices, 27 3-edges, and 9 faces, with one face blue and red | , 64 vertices, 48 4-edges, and 12 faces. | , 125 vertices, 75 5-edges, and 15 faces. | , 216 vertices, 108 6-edges, and 18 faces. | , 27 vertices, 72 6-edges, and 27 faces. |
Generalized cuboctahedra (quasiregular) | Cuboctahedron , 12 vertices, 24 2-edges, and 6+8 faces. | , 27 vertices, 81 2-edges, and 9+27 faces, with one face blue | , 48 vertices, 192 2-edges, and 12+64 faces, with one face blue | , 75 vertices, 375 2-edges, and 15+125 faces. | , 108 vertices, 648 2-edges, and 18+216 faces. | = , 72 vertices, 216 3-edges, and 54 faces. |
Generalized octahedra (regular) | Octahedron , 6 vertices, 12 2-edges, and 8 {3} faces. | , 9 vertices, 27 2-edges, and 27 {3} faces. | , 12 vertices, 48 2-edges, and 64 {3} faces. | , 15 vertices, 75 2-edges, and 125 {3} faces. | , 18 vertices, 108 2-edges, and 216 {3} faces. | , 27 vertices, 72 6-edges, and 27 faces. |
Other nonregular complex polytopes can be constructed within unitary reflection groups that don't make linear Coxeter graphs. In Coxeter diagrams with loops Coxeter marks a special period interior, like or symbol (11 1 1)3, and group [1 1 1]3. [38] [39] These complex polytopes have not been systematically explored beyond a few cases.
The group is defined by 3 unitary reflections, R1, R2, R3, all order 2: R12 = R12 = R32 = (R1R2)3 = (R2R3)3 = (R3R1)3 = (R1R2R3R1)p = 1. The period p can be seen as a double rotation in real .
As with all Wythoff constructions, polytopes generated by reflections, the number of vertices of a single-ringed Coxeter diagram polytope is equal to the order of the group divided by the order of the subgroup where the ringed node is removed. For example, a real cube has Coxeter diagram , with octahedral symmetry order 48, and subgroup dihedral symmetry order 6, so the number of vertices of a cube is 48/6=8. Facets are constructed by removing one node furthest from the ringed node, for example for the cube. Vertex figures are generated by removing a ringed node and ringing one or more connected nodes, and for the cube.
Coxeter represents these groups by the following symbols. Some groups have the same order, but a different structure, defining the same vertex arrangement in complex polytopes, but different edges and higher elements, like and with p≠3. [40]
Coxeter diagram | Order | Symbol or Position in Table VII of Shephard and Todd (1954) |
---|---|---|
, ( and ), , ... | pn − 1n!, p ≥ 3 | G(p, p, n), [p], [1 1 1]p, [1 1 (n−2)p]3 |
, | 72·6!, 108·9! | Nos. 33, 34, [1 2 2]3, [1 2 3]3 |
, ( and ), ( and ) | 14·4!, 3·6!, 64·5! | Nos. 24, 27, 29 |
Coxeter calls some of these complex polyhedra almost regular because they have regular facets and vertex figures. The first is a lower symmetry form of the generalized cross-polytope in . The second is a fractional generalized cube, reducing p-edges into single vertices leaving ordinary 2-edges. Three of them are related to the finite regular skew polyhedron in .
Space | Group | Order | Coxeter symbols | Vertices | Edges | Faces | Vertex figure | Notes |
---|---|---|---|---|---|---|---|---|
[1 1 1p]3 p=2,3,4... | 6p2 | (1 1 11p)3 | 3p | 3p2 | {3} | {2p} | Shephard symbol (1 1; 11)p same as βp 3 = | |
(11 1 1p)3 | p2 | {3} | {6} | Shephard symbol (11 1; 1)p 1/pγp 3 | ||||
[1 1 12]3 | 24 | (1 1 112)3 | 6 | 12 | 8 {3} | {4} | Same as β2 3 = = real octahedron | |
(11 1 12)3 | 4 | 6 | 4 {3} | {3} | 1/2 γ2 3 = = α3 = real tetrahedron | |||
[1 1 1]3 | 54 | (1 1 11)3 | 9 | 27 | {3} | {6} | Shephard symbol (1 1; 11)3 same as β3 3 = | |
(11 1 1)3 | 9 | 27 | {3} | {6} | Shephard symbol (11 1; 1)3 1/3 γ3 3 = β3 3 | |||
[1 1 14]3 | 96 | (1 1 114)3 | 12 | 48 | {3} | {8} | Shephard symbol (1 1; 11)4 same as β4 3 = | |
(11 1 14)3 | 16 | {3} | {6} | Shephard symbol (11 1; 1)4 1/4 γ4 3 | ||||
[1 1 15]3 | 150 | (1 1 115)3 | 15 | 75 | {3} | {10} | Shephard symbol (1 1; 11)5 same as β5 3 = | |
(11 1 15)3 | 25 | {3} | {6} | Shephard symbol (11 1; 1)5 1/5 γ5 3 | ||||
[1 1 16]3 | 216 | (1 1 116)3 | 18 | 216 | {3} | {12} | Shephard symbol (1 1; 11)6 same as β6 3 = | |
(11 1 16)3 | 36 | {3} | {6} | Shephard symbol (11 1; 1)6 1/6 γ6 3 | ||||
[1 1 14]4 | 336 | (1 1 114)4 | 42 | 168 | 112 {3} | {8} | representation {3,8|,4} = {3,8}8 | |
(11 1 14)4 | 56 | {3} | {6} | |||||
[1 1 15]4 | 2160 | (1 1 115)4 | 216 | 1080 | 720 {3} | {10} | representation {3,10|,4} = {3,10}8 | |
(11 1 15)4 | 360 | {3} | {6} | |||||
[1 1 14]5 | (1 1 114)5 | 270 | 1080 | 720 {3} | {8} | representation {3,8|,5} = {3,8}10 | ||
(11 1 14)5 | 360 | {3} | {6} |
Coxeter defines other groups with anti-unitary constructions, for example these three. The first was discovered and drawn by Peter McMullen in 1966. [42]
Space | Group | Order | Coxeter symbols | Vertices | Edges | Faces | Vertex figure | Notes |
---|---|---|---|---|---|---|---|---|
[1 14 14](3) | 336 | (11 14 14)(3) | 56 | 168 | 84 {4} | {6} | representation {4,6|,3} = {4,6}6 | |
[15 14 14](3) | 2160 | (115 14 14)(3) | 216 | 1080 | 540 {4} | {10} | representation {4,10|,3} = {4,10}6 | |
[14 15 15](3) | (114 15 15)(3) | 270 | 1080 | 432 {5} | {8} | representation {5,8|,3} = {5,8}6 |
Space | Group | Order | Coxeter symbols | Vertices | Other elements | Cells | Vertex figure | Notes |
---|---|---|---|---|---|---|---|---|
[1 1 2p]3 p=2,3,4... | 24p3 | (1 1 22p)3 | 4p | Shephard (22 1; 1)p same as βp 4 = | ||||
(11 1 2p )3 | p3 | Shephard (2 1; 11)p 1/pγp 4 | ||||||
[1 1 22]3 =[31,1,1] | 192 | (1 1 222)3 | 8 | 24 edges 32 faces | 16 | β2 4 = , real 16-cell | ||
(11 1 22 )3 | 1/2 γ2 4 = = β2 4, real 16-cell | |||||||
[1 1 2]3 | 648 | (1 1 22)3 | 12 | Shephard (22 1; 1)3 same as β3 4 = | ||||
(11 1 23)3 | 27 | Shephard (2 1; 11)3 1/3 γ3 4 | ||||||
[1 1 24]3 | 1536 | (1 1 224)3 | 16 | Shephard (22 1; 1)4 same as β4 4 = | ||||
(11 1 24 )3 | 64 | Shephard (2 1; 11)4 1/4 γ4 4 | ||||||
[14 1 2]3 | 7680 | (22 14 1)3 | 80 | Shephard (22 1; 1)4 | ||||
(114 1 2)3 | 160 | Shephard (2 1; 11)4 | ||||||
(11 14 2)3 | 320 | Shephard (2 11; 1)4 | ||||||
[1 1 2]4 | (1 1 22)4 | 80 | 640 edges 1280 triangles | 640 | ||||
(11 1 2)4 | 320 |
Space | Group | Order | Coxeter symbols | Vertices | Edges | Facets | Vertex figure | Notes |
---|---|---|---|---|---|---|---|---|
[1 1 3p]3 p=2,3,4... | 120p4 | (1 1 33p)3 | 5p | Shephard (33 1; 1)p same as βp 5 = | ||||
(11 1 3p)3 | p4 | Shephard (3 1; 11)p 1/pγp 5 | ||||||
[2 2 1]3 | 51840 | (2 1 22)3 | 80 | Shephard (2 1; 22)3 | ||||
(2 11 2)3 | 432 | Shephard (2 11; 2)3 |
Space | Group | Order | Coxeter symbols | Vertices | Edges | Facets | Vertex figure | Notes |
---|---|---|---|---|---|---|---|---|
[1 1 4p]3 p=2,3,4... | 720p5 | (1 1 44p)3 | 6p | Shephard (44 1; 1)p same as βp 6 = | ||||
(11 1 4p)3 | p5 | Shephard (4 1; 11)p 1/pγp 6 | ||||||
[1 2 3]3 | 39191040 | (2 1 33)3 | 756 | Shephard (2 1; 33)3 | ||||
(22 1 3)3 | 4032 | Shephard (22 1; 3)3 | ||||||
(2 11 3)3 | 54432 | Shephard (2 11; 3)3 |
A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e., an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral. Its dual polyhedron is the rhombic dodecahedron.
In elementary geometry, a polytope is a geometric object with flat sides (faces). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions n as an n-dimensional polytope or n-polytope. For example, a two-dimensional polygon is a 2-polytope and a three-dimensional polyhedron is a 3-polytope. In this context, "flat sides" means that the sides of a (k + 1)-polytope consist of k-polytopes that may have (k – 1)-polytopes in common.
In geometry, the Schläfli symbol is a notation of the form that defines regular polytopes and tessellations.
In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. In particular, all its elements or j-faces — cells, faces and so on — are also transitive on the symmetries of the polytope, and are themselves regular polytopes of dimension j≤ n.
In geometry, a polytope or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in the same or reverse order, and with the same angles between corresponding faces.
In geometry, a cross-polytope, hyperoctahedron, orthoplex, staurotope, or cocube is a regular, convex polytope that exists in n-dimensional Euclidean space. A 2-dimensional cross-polytope is a square, a 3-dimensional cross-polytope is a regular octahedron, and a 4-dimensional cross-polytope is a 16-cell. Its facets are simplexes of the previous dimension, while the cross-polytope's vertex figure is another cross-polytope from the previous dimension.
In geometry, the 16-cell is the regular convex 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,3,4}. It is one of the six regular convex 4-polytopes first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. It is also called C16, hexadecachoron, or hexdecahedroid [sic?].
In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of {6,3} or t{3,6} .
In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing a Coxeter group or sometimes a uniform polytope or uniform tiling constructed from the group.
In geometry, an apeirogon or infinite polygon is a polygon with an infinite number of sides. Apeirogons are the rank 2 case of infinite polytopes. In some literature, the term "apeirogon" may refer only to the regular apeirogon, with an infinite dihedral group of symmetries.
In geometry, a skew polygon is a closed polygonal chain in Euclidean space. It is a figure similar to a polygon except its vertices are not all coplanar. While a polygon is ordinarily defined as a plane figure, the edges and vertices of a skew polygon form a space curve. Skew polygons must have at least four vertices. The interior surface and corresponding area measure of such a polygon is not uniquely defined.
In geometry, a quasiregular polyhedron is a uniform polyhedron that has exactly two kinds of regular faces, which alternate around each vertex. They are vertex-transitive and edge-transitive, hence a step closer to regular polyhedra than the semiregular, which are merely vertex-transitive.
In mathematics, a regular 4-polytope or regular polychoron is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions.
In the geometry of 4 dimensions, the 3-3 duoprism or triangular duoprism is a four-dimensional convex polytope.
In geometry of 4 dimensions, a 3-4 duoprism, the second smallest p-q duoprism, is a 4-polytope resulting from the Cartesian product of a triangle and a square.
In geometry, an infinite skew polygon or skew apeirogon is an infinite 2-polytope with vertices that are not all colinear. Infinite zig-zag skew polygons are 2-dimensional infinite skew polygons with vertices alternating between two parallel lines. Infinite helical polygons are 3-dimensional infinite skew polygons with vertices on the surface of a cylinder.
In geometry, a regular complex polygon is a generalization of a regular polygon in real space to an analogous structure in a complex Hilbert space, where each real dimension is accompanied by an imaginary one. A regular polygon exists in 2 real dimensions, , while a complex polygon exists in two complex dimensions, , which can be given real representations in 4 dimensions, , which then must be projected down to 2 or 3 real dimensions to be visualized. A complex polygon is generalized as a complex polytope in .
In geometry, the Hessian polyhedron is a regular complex polyhedron 3{3}3{3}3, , in . It has 27 vertices, 72 3{} edges, and 27 3{3}3 faces. It is self-dual.
In geometry, the Möbius–Kantor polygon is a regular complex polygon 3{3}3, , in . 3{3}3 has 8 vertices, and 8 edges. It is self-dual. Every vertex is shared by 3 triangular edges. Coxeter named it a Möbius–Kantor polygon for sharing the complex configuration structure as the Möbius–Kantor configuration, (83).