Optical discs |
---|
Ultra Density Optical (UDO) is an optical disc format designed for high-density storage of high-definition video and data. The format was introduced by Sony to replace the Magneto-optical disc format.
An Ultra Density Optical disc, or UDO, is a 133.35 mm (5.25") ISO cartridge optical disc which can store up to 30 GB (gigabytes) of data. The second generation UDO2 media format was introduced in April 2007 and has a capacity of up to 80 GB. It utilizes a design based on the Magneto-optical disc, but uses Phase Change technology combined with a blue violet laser. A UDO/UDO2 disc that can store substantially more data than a magneto-optical (MO) disc. This is due to the shorter wavelength (405 nm) of the blue-violet laser employed. MOs use a 650 nm-wavelength red laser. Because its beam width is shorter when burning to a disc than a red-laser for MO, a blue-violet laser allows more information to be stored digitally in the same amount of space.
Current generations of UDO2 media store up to 60 GB. [1]
UDO optical disc storage media was developed as a replacement for the 9.1 GB Magneto-optical digital storage medium. The Ultra Density Optical was first announced by Sony on November 1, 2000. [2] It was later adopted with heavy investment by Plasmon, a UK technology company with extensive experience with computer archival backup systems and solutions. [3]
Currently, UDO/UDO2 is being championed by its development partners Plasmon, Asahi Pentax (responsible for the opto-mechanical assembly design), Mitsubishi Chemical, parent company of the Verbatim media storage brand, and various computer and IT solutions companies. Mitsubishi Chemical is the second major development partner of UDO media and the sole manufacturer of UDO media as of the 4th quarter of 2008.
On November 10, 2008, Plasmon creditors (led by Silicon Valley Bank) closed down Plasmon LMS (company) as CEO Stephen 'FX' Murphy was unable to secure funding to keep the money-losing company afloat. The UDO media factory in the UK was shut down and dismantled.
On January 13, 2009, Alliance Storage Technologies, a Colorado Springs Manufacturer of optical technology and Service Provider, acquired the assets of Plasmon (including UDO and UDO2 technology) in a liquidation sale. ASTI currently sells and supports UDO technologies sold under the Plasmon brand. [4]
ECMA-380: Data Interchange on 130 mm Rewritable and Write Once Read Many Ultra Density Optical (UDO) Disk Cartridges –Capacity: 60 Gigabytes per Cartridge – Second Generation [5]
UDO uses a Phase Change recording process that permanently alters the molecular structure of the disc surface.
There are three versions of UDO/UDO media: a True WORM (Write Once Read Many), an R/W (Rewritable), and Compliant WORM (shreddable WORM).
The table below summarizes the differences between conventional Magneto-Optical specifications and those of the enhanced Ultra Density Optical disc. [6]
Disc | 5.25-inch UDO Rewriteable | 5.25-inch UDO Write Once | 5.25-inch MO system (9.1 GB) |
---|---|---|---|
Disc diameter | 130 mm | 130 mm | 130 mm |
Disc thickness | 2.4 mm | 2.4 mm | 2.4 mm |
Cartridge size | Same as ISO 130 mm (135 x 153 x 11 mm) | Same as ISO 130 mm (135 x 153 x 11 mm) | ISO 130 mm (135 x 153 x 11 mm) |
Number of physical tracks | 96,964 | 96,964 | 49,728 |
Sector size | 8 kB | 8 kB | 4 kB |
Number of sectors | 2,504,407 | 2,504,407 | 1,118,880 |
Data area | 29.0-61.0 mm | 29.0-61.0 mm | 29.7-62.5 mm |
Designated [lower-alpha 1] laser wavelength | Violet (405 nm) | Violet (405 nm) | 660 nm |
Objective lens (NA) | 0.85 | 0.85 | 0.575 |
Recording layer | Phase change | Phase change | Magneto-optical |
Recording format | Land & groove | Land & groove | Land & groove |
Recording side | Both sides | Both sides | Both sides |
Track pitch | 0.33 μm | 0.33 μm | 0.65 μm |
Minimum bit length | 0.13 μm | 0.13 μm | 0.3 μm |
Recording density | 15.0 Gb/in² | 15.0 Gb/in² | 3.3 Gb/in² |
Transfer rate | 4-8 MB/s | 4-8 MB/s | 3-6 MB/s |
Error correction | LDC | LDC | LDC |
Modulation | RLL (1,7) | RLL (1,7) | RLL (1,7) |
UDO Drives Specifications Summary
UDO comes in both internal and external drive guises. External drives are also available as part a robotic autoloader. All current drives are designed for heavy duty use.
UDO systems use a blue-violet laser operating at a wavelength of 405 nm, similar to the one used in Blu-ray Disc, to read and write data. Conventional MOs use red lasers at 660 nm. [7]
The blue-violet laser's shorter wavelength makes it possible to store more information on a 13 cm sized UDO disc. The minimum "spot size" on which a laser can be focused is limited by diffraction, and depends on the wavelength of the light and the numerical aperture of the lens used to focus it. By decreasing the wavelength, using a higher numerical aperture (0.85, compared with 0.575 for MO), the laser beam can be focused much more tightly. This produces a smaller spot on the disc than in existing MOs, and allows more information to be physically stored in the same area.
The opto-mechanism design of current Plasmon UDO drives was jointly developed with Asahi Pentax.
Currently UDO has an expected data archival life of around 50 years. Apart from the storage size, the discs (like Magneto Optical discs) are designed for durability and long term reliability.
A company called Blu-Laser Cinema announced in June 2005 that it was launching a new player using the UDO format to provide a secure viewing and editing platform for film production houses. Targeted towards the high-end video editing and production community, the unit featured a smart card reader and a USB dongle with an embedded biometric fingerprint reader to allow access only to authorized users. [8]
This section contains content that is written like an advertisement .(January 2012) |
The core technology for UDO is essentially similar to Blu-ray Discs, as well as PDD (all were developed by Sony), although there are a number of key differences; the primary ones being:
Computer data storage or digital data storage is a technology consisting of computer components and recording media that are used to retain digital data. It is a core function and fundamental component of computers.
An optical disc is a flat, usually disc-shaped object that stores information in the form of physical variations on its surface that can be read with the aid of a beam of light. Optical discs can be reflective, where the light source and detector are on the same side of the disc, or transmissive, where light shines through the disc to be detected on the other side.
Universal Disk Format (UDF) is an open, vendor-neutral file system for computer data storage for a broad range of media. In practice, it has been most widely used for DVDs and newer optical disc formats, supplanting ISO 9660. Due to its design, it is very well suited to incremental updates on both write-once and re-writable optical media. UDF was developed and maintained by the Optical Storage Technology Association (OSTA).
In computing, an optical disc drive is a disc drive that uses laser light or electromagnetic waves within or near the visible light spectrum as part of the process of reading or writing data to or from optical discs. Some drives can only read from certain discs, but recent drives can both read and record, also called burners or writers. Compact discs, DVDs, and Blu-ray discs are common types of optical media which can be read and recorded by such drives.
A magneto-optical drive is a kind of optical disc drive capable of writing and rewriting data upon a magneto-optical disc. 130 mm (5.25 in) and 90 mm (3.5 in) discs were the most common sizes. In 1983, just a year after the introduction of the compact disc, Kees Schouhamer Immink and Joseph Braat presented the first experiments with erasable magneto-optical compact discs during the 73rd AES Convention in Eindhoven. The technology was introduced commercially in 1985. Although optical, they normally appear as hard disk drives to an operating system and can be formatted with any file system. Magneto-optical drives were common in some countries, such as Japan, but have fallen into disuse.
DVD-RAM is a DVD-based disc specification presented in 1996 by the DVD Forum, which specifies rewritable DVD-RAM media and the appropriate DVD writers. DVD-RAM media have been used in computers as well as camcorders and personal video recorders since 1998.
Floptical refers to a type of floppy disk drive that combines magnetic and optical technologies to store data on media similar to standard 3+1⁄2-inch floppy disks. The name is a portmanteau of the words "floppy" and "optical". It refers specifically to one brand of drive and disk system, but is also used more generically to refer to any system using similar techniques.
The Holographic Versatile Disc (HVD) is an optical disc technology that was expected to store up to several terabytes of data on an optical disc 10 cm or 12 cm in diameter. Its development commenced in April 2004, but it never arrived due to lack of funding. The company responsible for HVD went bankrupt in 2010.
The double-density compact disc (DDCD) is an optical disc technology developed by Sony and Philips using the same 780 nm laser wavelength as a compact disc. The format was announced in July 2000 and is defined by the Purple Book standard document. Unlike the compact-disc technology it is based on, DDCD was designed exclusively for data, with no audio capabilities.
Professional Disc (PFD) is a digital recording optical disc format introduced by Sony in 2003 primarily for XDCAM, its tapeless camcorder system. It was one of the first optical formats to utilize a blue laser, which allowed for a higher density of data to be stored on optical media compared to infrared laser technology used in the CD and red laser technology used in the DVD format.
Optical storage refers to a class of data storage systems that use light to read or write data to an underlying optical media. Although a number of optical formats have been used over time, the most common examples are optical disks like the compact disc (CD) and DVD. Reading and writing methods have also varied over time, but most modern systems as of 2023 use lasers as the light source and use it both for reading and writing to the discs. Britannica notes that it "uses low-power laser beams to record and retrieve digital (binary) data."
An optical jukebox is a robotic data storage device that can automatically load and unload optical discs, such as Compact Disc, DVD, Ultra Density Optical or Blu-ray and can provide terabytes (TB) or petabytes (PB) of tertiary storage. The devices are often called optical disk libraries, "optical storage archives", robotic drives, or autochangers. Jukebox devices may have up to 2,000 slots for disks, and usually have a picking device that traverses the slots and drives. Zerras Inc. provides a removeable capsule that holds up to 200 discs per library which can be scaled-out to manage 1600 discs per 42U rack unit. The arrangement of the slots and picking devices affects performance and maintenance costs, depending on the robotics design, the space between a disk and the picking device. Seek times and transfer rates vary depending upon the optical technology used.
In computing, external storage refers to non-volatile (secondary) data storage outside a computer's own internal hardware, and thus can be readily disconnected and accessed elsewhere. Such storage devices may refer to removable media, compact flash drives, portable storage devices, or network-attached storage. Web-based cloud storage is the latest technology for external storage.
DVD recordable and DVD rewritable are optical disc recording technologies. Both terms describe DVD optical discs that can be written to by a DVD recorder, whereas only 'rewritable' discs are able to erase and rewrite data. Data is written ('burned') to the disc by a laser, rather than the data being 'pressed' onto the disc during manufacture, like a DVD-ROM. Pressing is used in mass production, primarily for the distribution of home video.
Optical disc authoring requires a number of different optical disc recorder technologies working in tandem, from the optical disc media to the firmware to the control electronics of the optical disc drive.
Holographic data storage is a potential technology in the area of high-capacity data storage. While magnetic and optical data storage devices rely on individual bits being stored as distinct magnetic or optical changes on the surface of the recording medium, holographic data storage records information throughout the volume of the medium and is capable of recording multiple images in the same area utilizing light at different angles.
CD-RW is a digital optical disc storage format introduced in 1997. A CD-RW compact disc (CD-RWs) can be written, read, erased, and re-written.
3D optical data storage is any form of optical data storage in which information can be recorded or read with three-dimensional resolution.
Blu-ray is a digital optical disc data storage format designed to supersede the DVD format. It was invented and developed in 2005 and released worldwide on June 20, 2006, capable of storing several hours of high-definition video. The main application of Blu-ray is as a medium for video material such as feature films and for the physical distribution of video games for the PlayStation 3, PlayStation 4, PlayStation 5, Xbox One, and Xbox Series X. The name refers to the blue laser used to read the disc, which allows information to be stored at a greater density than is possible with the longer-wavelength red laser used for DVDs.
As of 2021, multiple consumer-oriented, optical-disk media formats are or were available:
The press releases on this website are provided for historical reference purposes only.