Plated-wire memory

Last updated

Plated-wire memory is a variation of magnetic-core memory developed by Bell Laboratories in 1957. [1] Its primary advantage was that it could be assembled by machine, which potentially led to lower prices than magnetic core, which was almost always assembled by hand.

Instead of threading individual ferrite cores on wires, plated-wire memory used a grid of wires coated with a thin layer of ironnickel alloy (permalloy). [2] The magnetic field normally stored in the ferrite core was instead stored on the wire itself. Operation was generally similar to core memory, with the wire itself acting as the data line, and the magnetic domains providing the individual bit locations defined by address (word) lines running on either side of (and perpendicular to) the data wire.

Early versions operated in a destructive read mode,[ citation needed ] requiring a write after read to restore data. Non-destructive read mode was possible, but this required much greater uniformity of the magnetic coating.

Improvements in semiconductor RAM chips provided the higher storage densities and higher speeds needed for large-scale application such as mainframe computers, replacing previous types of memory, including both core and plated-wire memory.

Plated-wire memory has been used in a number of applications, typically in aerospace. It was used in the UNIVAC 1110 and UNIVAC 9000 series computers, the Viking program that sent landers to Mars, the Voyager space probes, [3] a prototype guidance computer for the Minuteman-III, the Space Shuttle Main Engine controllers, [4] the KH-9 Hexagon reconnaissance satellite, [5] and in the Hubble Space Telescope.

Related Research Articles

<span class="mw-page-title-main">Magnetic-core memory</span> Type of computer memory used from 1955 to 1975

Magnetic-core memory was the predominant form of random-access computer memory for 20 years between about 1955 and 1975. Such memory is often just called core memory, or, informally, core.

<span class="mw-page-title-main">UNIVAC I</span> First general-purpose computer designed for business application (1951)

The UNIVAC I was the first general-purpose electronic digital computer design for business application produced in the United States. It was designed principally by J. Presper Eckert and John Mauchly, the inventors of the ENIAC. Design work was started by their company, Eckert–Mauchly Computer Corporation (EMCC), and was completed after the company had been acquired by Remington Rand. In the years before successor models of the UNIVAC I appeared, the machine was simply known as "the UNIVAC".

<span class="mw-page-title-main">IBM 650</span> Vacuum tube computer system

The IBM 650 Magnetic Drum Data-Processing Machine is an early digital computer produced by IBM in the mid-1950s. It was the first mass produced computer in the world. Almost 2,000 systems were produced, the last in 1962, and it was the first computer to make a meaningful profit. The first one was installed in late 1954 and it was the most-popular computer of the 1950s.

<span class="mw-page-title-main">UNIVAC</span> Series of mainframe computer models

UNIVAC was a line of electronic digital stored-program computers starting with the products of the Eckert–Mauchly Computer Corporation. Later the name was applied to a division of the Remington Rand company and successor organizations.

<span class="mw-page-title-main">Drum memory</span> Magnetic data storage device

Drum memory was a magnetic data storage device invented by Gustav Tauschek in 1932 in Austria. Drums were widely used in the 1950s and into the 1960s as computer memory.

<span class="mw-page-title-main">IBM 7090</span> Mainframe computer

The IBM 7090 is a second-generation transistorized version of the earlier IBM 709 vacuum tube mainframe computer that was designed for "large-scale scientific and technological applications". The 7090 is the fourth member of the IBM 700/7000 series scientific computers. The first 7090 installation was in December 1959. In 1960, a typical system sold for $2.9 million or could be rented for $63,500 a month.

<span class="mw-page-title-main">Bubble memory</span> Obsolete type of non-volatile computer memory

Bubble memory is a type of non-volatile computer memory that uses a thin film of a magnetic material to hold small magnetized areas, known as bubbles or domains, each storing one bit of data. The material is arranged to form a series of parallel tracks that the bubbles can move along under the action of an external magnetic field. The bubbles are read by moving them to the edge of the material, where they can be read by a conventional magnetic pickup, and then rewritten on the far edge to keep the memory cycling through the material. In operation, bubble memories are similar to delay-line memory systems.

Thin-film memory is a high-speed alternative to magnetic-core memory developed by Sperry Rand in a government-funded research project.

<span class="mw-page-title-main">UNIVAC 1100/2200 series</span> Family of mainframe computers

The UNIVAC 1100/2200 series is a series of compatible 36-bit computer systems, beginning with the UNIVAC 1107 in 1962, initially made by Sperry Rand. The series continues to be supported today by Unisys Corporation as the ClearPath Dorado Series. The solid-state 1107 model number was in the same sequence as the earlier vacuum-tube computers, but the early computers were not compatible with the solid-state successors.

<span class="mw-page-title-main">Core rope memory</span> Early form of read-only memory

Core rope memory is a form of read-only memory (ROM) for computers. It was used in the UNIVAC I and the UNIVAC II, developed by the Eckert-Mauchly Computer Corporation in the 1950s, as it was a popular technology for program and data storage in that era. It was later used in the 1960s by early NASA Mars space probes and then in the Apollo Guidance Computer (AGC) and programmed by the Massachusetts Institute of Technology (MIT) Instrumentation Lab and built by Raytheon.

<span class="mw-page-title-main">IBM System/4 Pi</span> Family of avionics computers

The IBM System/4 Pi is a family of avionics computers used, in various versions, on the F-15 Eagle fighter, E-3 Sentry AWACS, Harpoon Missile, NASA's Skylab, MOL, and the Space Shuttle, as well as other aircraft. Development began in 1965, deliveries in 1967.

<span class="mw-page-title-main">Magnetic storage</span> Recording of data on a magnetizable medium

Magnetic storage or magnetic recording is the storage of data on a magnetized medium. Magnetic storage uses different patterns of magnetisation in a magnetizable material to store data and is a form of non-volatile memory. The information is accessed using one or more read/write heads.

Reading is an action performed by computers, to acquire data from a source and place it into their volatile memory for processing. Computers may read information from a variety of sources, such as magnetic storage, the Internet, or audio and video input ports. Reading is one of the core functions of a Turing machine.

The UNISERVO tape drive was the primary I/O device on the UNIVAC I computer. It was the first tape drive for a commercially sold computer.

Density is a measure of the quantity of information bits that can be stored on a given length of track, area of the surface, or in a given volume of a computer storage medium. Generally, higher density is more desirable, for it allows more data to be stored in the same physical space. Density therefore has a direct relationship to storage capacity of a given medium. Density also generally affects the performance within a particular medium, as well as price.

<span class="mw-page-title-main">Magnetic core</span> Object used to guide and confine magnetic fields

A magnetic core is a piece of magnetic material with a high magnetic permeability used to confine and guide magnetic fields in electrical, electromechanical and magnetic devices such as electromagnets, transformers, electric motors, generators, inductors, loudspeakers, magnetic recording heads, and magnetic assemblies. It is made of ferromagnetic metal such as iron, or ferrimagnetic compounds such as ferrites. The high permeability, relative to the surrounding air, causes the magnetic field lines to be concentrated in the core material. The magnetic field is often created by a current-carrying coil of wire around the core.

<span class="mw-page-title-main">Ferrite (magnet)</span> Ferrimagnetic ceramic material composed of rust and a metallic element

A ferrite is a ceramic material made by mixing and firing iron(III) oxide with one or more additional metallic elements, such as strontium, barium, manganese, nickel, and zinc. They are ferrimagnetic, meaning they are attracted by magnetic fields and can be magnetized to become permanent magnets. Unlike other ferromagnetic materials, most ferrites are not electrically conductive, making them useful in applications like magnetic cores for transformers to suppress eddy currents. Ferrites can be divided into two families based on their resistance to being demagnetized.

(Dr.) Dudley Allen Buck (1927–1959) was an electrical engineer and inventor of components for high-speed computing devices in the 1950s. He is best known for invention of the cryotron, a superconductive computer component that is operated in liquid helium at a temperature near absolute zero. Other inventions were ferroelectric memory, content-addressable memory, non-destructive sensing of magnetic fields, and writing printed circuits with a beam of electrons.

<span class="mw-page-title-main">Vacuum-tube computer</span> Earliest electronic computer design

A vacuum-tube computer, now termed a first-generation computer, is a computer that uses vacuum tubes for logic circuitry. While the history of mechanical aids to computation goes back centuries, if not millennia, the history of vacuum tube computers is confined to the middle of the 20th century. Lee De Forest invented the triode in 1906. The first example of using vacuum tubes for computation, the Atanasoff–Berry computer, was demonstrated in 1939. Vacuum-tube computers were initially one-of-a-kind designs, but commercial models were introduced in the 1950s and sold in volumes ranging from single digits to thousands of units. By the early 1960s vacuum tube computers were obsolete, superseded by second-generation transistorized computers.

Rod memory is one of the many variations on magnetic core memory that attempts to lower costs by automating its manufacturing. It was introduced by NCR in 1964 as part of the NCR 315 RMC computer, RMC for "rod memory computer". It was also used in their Century line.

References

  1. U. F. Gianola (1958). "Nondestructive Memory Employing a Domain Oriented Steel Wire". J. Appl. Phys. 29: 849–853. doi:10.1063/1.1723297.
  2. J. Mathias; G. Fedde (December 1969). "Plated-wire technology: A critical review". IEEE Transactions on Magnetics. 5 (4): 728–751. doi:10.1109/TMAG.1969.1066652.
  3. Raymond L. Heacock (1980). "The Voyager Spacecraft". Proceedings of the Institution of Mechanical Engineers. 194 (1): 211–224. doi:10.1243/PIME_PROC_1980_194_026_02.
  4. Tomayko, James. "Chapter Four: Computers in the Space Shuttle Avionics System". Computers in Spaceflight: The NASA Experience. NASA. Retrieved 8 August 2011.
  5. "The HEXAGON story". National Reconnaissance Office. 1988.