This article includes a list of general references, but it lacks sufficient corresponding inline citations .(December 2017) |
Computer memory and computer data storage types |
---|
Volatile |
Non-volatile |
Core rope memory is a form of read-only memory (ROM) for computers. It was used in the UNIVAC I (Universal Automatic Computer I) and the UNIVAC II, developed by the Eckert-Mauchly Computer Corporation in the 1950s, as it was a popular technology for program and data storage in that era. It was later used in the 1960s by early NASA Mars space probes and then in the Apollo Guidance Computer (AGC), [1] which was built by Raytheon.
The software for the AGC was written by programmers at the Massachusetts Institute of Technology (MIT) Instrumentation Lab, and was woven into core rope memory by female workers in factories. [2] Some programmers nicknamed the finished product LOL memory, for Little Old Lady memory. [3]
Similar to magnetic-core memory, magnetic rings (or cores) are used to determine the data of the software. Unlike magnetic-core memory, the cores themselves are not used to store the data; the way a core is wired controls whether that core represents a '0' or a '1'.
There are three main types of functions a wire can have in core rope memory:
To read from core rope memory, the set/reset wire is given a strong current to change the polarity of the cores. This induces a small voltage on the sense wires passing through them, which can then be used to interpret binary data. The inhibit wires pass a current in the opposite direction of the set/reset wire for all cores but the desired one, acting like a memory addressing system. This prevents the sense wires from detecting polarity changes from the other magnetic cores.
The sense wires are used to encode the data by either going through a core or bypassing it. By using many sense wires, multiple bits of data can be stored for each core. In the case of the Apollo Guidance Computer, each core had 192 sense wires passing through it, which could store 12 16-bit words per core. [4]
By the standards of the time, a relatively large amount of data could be stored in a small installed volume of core rope memory: 72 kilobytes per cubic foot, or roughly 2.5 megabytes per cubic meter. This was about 18 times the amount of magnetic-core memory (within two cubic feet).[ citation needed ]
Memory technology | Data units per cubic foot | Data units per cubic meter | ||
---|---|---|---|---|
Bytes | Bits | Bytes | Bits | |
Core rope ROM | 72 KB | 576 Kbit | ~2.5 MB | ~20 Mbit |
Magnetic-core RAM | 4 KB | 32 Kbit | ~140 KB | ~1 Mbit |
In computing, magnetic-core memory is a form of random-access memory. It predominated for roughly 20 years between 1955 and 1975, and is often just called core memory, or, informally, core.
The UNIVAC I was the first general-purpose electronic digital computer design for business application produced in the United States. It was designed principally by J. Presper Eckert and John Mauchly, the inventors of the ENIAC. Design work was started by their company, Eckert–Mauchly Computer Corporation (EMCC), and was completed after the company had been acquired by Remington Rand. In the years before successor models of the UNIVAC I appeared, the machine was simply known as "the UNIVAC".
UNIVAC was a line of electronic digital stored-program computers starting with the products of the Eckert–Mauchly Computer Corporation. Later the name was applied to a division of the Remington Rand company and successor organizations.
Drum memory was a magnetic data storage device invented by Gustav Tauschek in 1932 in Austria. Drums were widely used in the 1950s and into the 1960s as computer memory.
Non-volatile random-access memory (NVRAM) is random-access memory that retains data without applied power. This is in contrast to dynamic random-access memory (DRAM) and static random-access memory (SRAM), which both maintain data only for as long as power is applied, or forms of sequential-access memory such as magnetic tape, which cannot be randomly accessed but which retains data indefinitely without electric power.
The Apollo Guidance Computer (AGC) was a digital computer produced for the Apollo program that was installed on board each Apollo command module (CM) and Apollo Lunar Module (LM). The AGC provided computation and electronic interfaces for guidance, navigation, and control of the spacecraft. The AGC was the first computer based on silicon integrated circuits. The computer's performance was comparable to the first generation of home computers from the late 1970s, such as the Apple II, TRS-80, and Commodore PET.
The UNIVAC 1100/2200 series is a series of compatible 36-bit computer systems, beginning with the UNIVAC 1107 in 1962, initially made by Sperry Rand. The series continues to be supported today by Unisys Corporation as the ClearPath Dorado Series. The solid-state 1107 model number was in the same sequence as the earlier vacuum-tube computers, but the early computers were not compatible with their solid-state successors.
The UNIVAC 1103 or ERA 1103, a successor to the UNIVAC 1101, is a computer system designed by Engineering Research Associates and built by the Remington Rand corporation in October 1953. It was the first computer for which Seymour Cray was credited with design work.
The UNIVAC 490 was a 30-bit word magnetic-core memory machine with 16K or 32K words; 4.8 microsecond cycle time made by UNIVAC. It was a commercial derivative of the instruction set that had been developed for the AN/USQ-17 by Seymour Cray for the US Navy. This was the last machine that Cray designed before leaving UNIVAC to join the early Control Data Corporation.
Magnetic storage or magnetic recording is the storage of data on a magnetized medium. Magnetic storage uses different patterns of magnetisation in a magnetizable material to store data and is a form of non-volatile memory. The information is accessed using one or more read/write heads.
The IBM 702 was an early generation tube-based digital computer produced by IBM in the early to mid-1950s. It was the company's response to Remington Rand's UNIVAC, which was the first mainframe computer to use magnetic tapes. As these machines were aimed at the business market, they lacked the leading-edge computational power of the IBM 701 and ERA 1103, which were favored for scientific computing, weather forecasting, the aircraft industry, and the military and intelligence communities.
The Launch Vehicle Digital Computer (LVDC) was a computer that provided the autopilot for the Saturn V rocket from launch, through Earth orbit insertion, and the trans-lunar injection burn that would send the Apollo spacecraft to the Moon. Designed and manufactured by IBM's Electronics Systems Center in Owego, New York, it was one of the major components of the Instrument Unit, fitted to the S-IVB stage of the Saturn V and Saturn IB rockets. The LVDC also supported pre- and post-launch checkout of the Saturn hardware. It was used in conjunction with the Launch Vehicle Data Adaptor (LVDA) which performed signal conditioning from the sensor inputs to the computer from the launch vehicle.
Plated-wire memory is a variation of magnetic-core memory developed by Bell Laboratories in 1957. Its primary advantage was that it could be assembled by machine, which potentially led to lower prices than magnetic core, which was almost always assembled by hand.
The Apollo Abort Guidance System was a backup computer system providing an abort capability in the event of failure of the Lunar Module's primary guidance system during descent, ascent or rendezvous. As an abort system, it did not support guidance for a lunar landing.
Read-only memory (ROM) is a type of non-volatile memory used in computers and other electronic devices. Data stored in ROM cannot be electronically modified after the manufacture of the memory device. Read-only memory is useful for storing software that is rarely changed during the life of the system, also known as firmware. Software applications, such as video games, for programmable devices can be distributed as plug-in cartridges containing ROM.
Albert L. Hopkins Jr. was an American computer designer. He worked at the US MIT Instrumentation Laboratory during the development of the Apollo Guidance, Navigation, and Control System, or the GN&C. The system was designed in two forms, one for the command module and one for the lunar module. The CM version included an optical system with an integrated scanning telescope and sextant for erecting and correcting the inertial platform. Albert Hopkins received a Ph.D. from Harvard University under Howard Aiken, he then joined the MIT Instrumentation Lab where he was Assistant Director; together with Ramon Alonso, and Hugh Blair-Smith he was a member of the group that designed the computer, designated AGC for Apollo Guidance Computer, identical in the CM and LM.
The Datamatic Division of Honeywell announced the H-800 electronic computer in 1958. The first installation occurred in 1960. A total of 89 units were delivered. The H-800 design was part of a family of 48-bit word, three-address instruction format computers that descended from the Datamatic 1000, which was a joint Honeywell and Raytheon project started in 1955. The 1800 and 1800-II were follow-on designs to the H-800.
Margaret Elaine Hamilton is an American computer scientist. She was director of the Software Engineering Division of the MIT Instrumentation Laboratory, which developed on-board flight software for NASA's Apollo program. She later founded two software companies—Higher Order Software in 1976 and Hamilton Technologies in 1986, both in Cambridge, Massachusetts.
Software is a set of programmed instructions stored in the memory of stored-program digital computers for execution by the processor. Software is a recent development in human history and is fundamental to the Information Age.
A vacuum-tube computer, now termed a first-generation computer, is a computer that uses vacuum tubes for logic circuitry. While the history of mechanical aids to computation goes back centuries, if not millennia, the history of vacuum tube computers is confined to the middle of the 20th century. Lee De Forest invented the triode in 1906. The first example of using vacuum tubes for computation, the Atanasoff–Berry computer, was demonstrated in 1939. Vacuum-tube computers were initially one-of-a-kind designs, but commercial models were introduced in the 1950s and sold in volumes ranging from single digits to thousands of units. By the early 1960s vacuum tube computers were obsolete, superseded by second-generation transistorized computers.