1T-SRAM

Last updated

1T-SRAM is a pseudo-static random-access memory (PSRAM) technology introduced by MoSys, Inc., which offers a high-density alternative to traditional static random access memory (SRAM) in embedded memory applications. Mosys uses a single-transistor storage cell (bit cell) like dynamic random access memory (DRAM), but surrounds the bit cell with control circuitry that makes the memory functionally equivalent to SRAM (the controller hides all DRAM-specific operations such as precharging and refresh). 1T-SRAM (and PSRAM in general) has a standard single-cycle SRAM interface and appears to the surrounding logic just as an SRAM would.

Contents

Due to its one-transistor bit cell, 1T-SRAM is smaller than conventional (six-transistor, or "6T") SRAM, and closer in size and density to embedded DRAM (eDRAM). At the same time, 1T-SRAM has performance comparable to SRAM at multi-megabit densities, uses less power than eDRAM and is manufactured in a standard CMOS logic process like conventional SRAM.

MoSys markets 1T-SRAM as physical IP for embedded (on-die) use in System-on-a-chip (SOC) applications. It is available on a variety of foundry processes, including Chartered, SMIC, TSMC, and UMC. Some engineers use the terms 1T-SRAM and "embedded DRAM" interchangeably, as some foundries provide MoSys's 1T-SRAM as "eDRAM". However, other foundries provide 1T-SRAM as a distinct offering.

Technology

1T SRAM is built as an array of small banks (typically 128 rows × 256 bits/row, 32 kilobits in total) coupled to a bank-sized SRAM cache and an intelligent controller. Although space-inefficient compared to regular DRAM, the short word lines allow much higher speeds, so the array can do a full sense and precharge (RAS cycle) per access, providing high-speed random access. Each access is to one bank, allowing unused banks to be refreshed at the same time. Additionally, each row read out of the active bank is copied to the bank-sized SRAM cache. In the event of repeated accesses to one bank, which would not allow time for refresh cycles, there are two options: either the accesses are all to different rows, in which case all rows will be refreshed automatically, or some rows are accessed repeatedly. In the latter case, the cache provides the data and allows time for an unused row of the active bank to be refreshed.

There have been four generations of 1T-SRAM:

Original 1T-SRAM
About half the size of 6T-SRAM, less than half the power.
1T-SRAM-M
Variant with lower standby power consumption, for applications such as cell phones.
1T-SRAM-R
Incorporates ECC for lower soft error rates. To avoid an area penalty, it uses smaller bit cells, which have an inherently higher error rate, but the ECC more than makes up for that.
1T-SRAM-Q
This "quad-density" version uses a slightly non-standard fabrication process to produce a smaller folded capacitor, allowing the memory size to be halved again over 1T-SRAM-R. This does add slightly to wafer production costs, but does not interfere with logic transistor fabrication the way conventional DRAM capacitor construction does.

Comparison with other embedded memory technologies

1T-SRAM has speed comparable to 6T-SRAM (at multi-megabit densities). It is significantly faster speed than eDRAM, and the "quad-density" variant is only slightly larger (10–15% is claimed). On most foundry processes, designs with eDRAM require additional (and costly) masks and processing steps, offsetting the cost of a larger 1T-SRAM die. Also, some of those steps require very high temperatures and must take place after the logic transistors are formed, possibly damaging them.

1T-SRAM is also available in device (IC) form. The Nintendo GameCube was the first video game system to use 1T-SRAM as a primary (main) memory storage; the GameCube possesses several dedicated 1T-SRAM devices. 1T-SRAM is also used in the successor to the GameCube, Nintendo's Wii console.

Note that this is not the same as 1T DRAM, which is a "capacitorless" DRAM cell built using the parasitic channel capacitor of SOI transistors rather than a discrete capacitor.

MoSys claims the following sizes for 1T-SRAM arrays:

1T-SRAM Cell sizes (μm²/bit or mm²/Mbit)
Process node 250 nm180 nm130 nm90 nm65 nm45 nm
6T-SRAMbit cell7.564.652.431.360.710.34
with overhead11.287.183.732.091.090.52
1T-SRAMbit cell3.511.971.100.610.320.15
with overhead7.03.61.91.10.570.28
1T-SRAM-Qbit cell0.500.280.150.07
with overhead1.050.550.290.14

See also

US Patent 7,146,454 "Hiding refresh in 1T-SRAM Architecture"* (by Cypress Semiconductor) describes a similar system for hiding DRAM refresh using an SRAM cache.

Related Research Articles

Computer memory Device used on a computer for storing data

In computing, memory refers to a device that is used to store information for immediate use in a computer or related computer hardware device. It typically refers to semiconductor memory, specifically metal–oxide–semiconductor (MOS) memory, where data is stored within MOS memory cells on a silicon integrated circuit chip. The term "memory" is often synonymous with the term "primary storage". Computer memory operates at a high speed, for example random-access memory (RAM), as a distinction from storage that provides slow-to-access information but offers higher capacities. If needed, contents of the computer memory can be transferred to secondary storage; a very common way of doing this is through a memory management technique called virtual memory. An archaic synonym for memory is store.

Static random-access memory Type of computer memory

Static random-access memory is a type of random-access memory (RAM) that uses latching circuitry (flip-flop) to store each bit. SRAM is volatile memory; data is lost when power is removed.

Dynamic random-access memory Type of computer memory

Dynamic random-access memory is a type of random-access semiconductor memory that stores each bit of data in a memory cell consisting of a tiny capacitor and a transistor, both typically based on metal-oxide-semiconductor (MOS) technology. The capacitor can either be charged or discharged; these two states are taken to represent the two values of a bit, conventionally called 0 and 1. The electric charge on the capacitors slowly leaks off, so without intervention the data on the chip would soon be lost. To prevent this, DRAM requires an external memory refresh circuit which periodically rewrites the data in the capacitors, restoring them to their original charge. This refresh process is the defining characteristic of dynamic random-access memory, in contrast to static random-access memory (SRAM) which does not require data to be refreshed. Unlike flash memory, DRAM is volatile memory, since it loses its data quickly when power is removed. However, DRAM does exhibit limited data remanence.

Synchronous dynamic random-access memory Type of computer memory

Synchronous dynamic random-access memory is any DRAM where the operation of its external pin interface is coordinated by an externally supplied clock signal.

Non-volatile random-access memory (NVRAM) is random-access memory that retains data without applied power. This is in contrast to dynamic random-access memory (DRAM) and static random-access memory (SRAM), which both maintain data only for as long as power is applied, or such forms of memory as magnetic tape, which cannot be randomly accessed but which retains data indefinitely without electric power.

Magnetoresistive random-access memory (MRAM) is a type of non-volatile random-access memory which stores data in magnetic domains. Developed in the mid-1980s, proponents have argued that magnetoresistive RAM will eventually surpass competing technologies to become a dominant or even universal memory. Currently, memory technologies in use such as flash RAM and DRAM have practical advantages that have so far kept MRAM in a niche role in the market.

Nano-RAM is a proprietary computer memory technology from the company Nantero. It is a type of nonvolatile random access memory based on the position of carbon nanotubes deposited on a chip-like substrate. In theory, the small size of the nanotubes allows for very high density memories. Nantero also refers to it as NRAM.

Volatile memory, in contrast to non-volatile memory, is computer memory that requires power to maintain the stored information; it retains its contents while powered on but when the power is interrupted, the stored data is quickly lost.

Semiconductor memory is a digital electronic semiconductor device used for digital data storage, such as computer memory. It typically refers to MOS memory, where data is stored within metal–oxide–semiconductor (MOS) memory cells on a silicon integrated circuit memory chip. There are numerous different types using different semiconductor technologies. The two main types of random-access memory (RAM) are static RAM (SRAM), which uses several MOS transistors per memory cell, and dynamic RAM (DRAM), which uses a single MOS transistor and MOS capacitor per cell. Non-volatile memory uses floating-gate memory cells, which consist of a single floating-gate MOS transistor per cell.

Column Address Strobe (CAS) latency, or CL, is the delay in clock cycles between the READ command and the moment data is available. In asynchronous DRAM, the interval is specified in nanoseconds. In synchronous DRAM, the interval is specified in clock cycles. Because the latency is dependent upon a number of clock ticks instead of absolute time, the actual time for an SDRAM module to respond to a CAS event might vary between uses of the same module if the clock rate differs.

Ferroelectric RAM Novel type of computer memory

Ferroelectric RAM is a random-access memory similar in construction to DRAM but using a ferroelectric layer instead of a dielectric layer to achieve non-volatility. FeRAM is one of a growing number of alternative non-volatile random-access memory technologies that offer the same functionality as flash memory.

Embedded DRAM (eDRAM) is dynamic random-access memory (DRAM) integrated on the same die or multi-chip module (MCM) of an application-specific integrated circuit (ASIC) or microprocessor. eDRAM's cost-per-bit is higher when compared to equivalent standalone DRAM chips used as external memory, but the performance advantages of placing eDRAM onto the same chip as the processor outweigh the cost disadvantages in many applications. In performance and size, eDRAM is positioned between level 3 cache and conventional DRAM on the memory bus, and effectively functions as a level 4 cache, though architectural descriptions may not explicitly refer to it in those terms.

Memory refresh is the process of periodically reading information from an area of computer memory and immediately rewriting the read information to the same area without modification, for the purpose of preserving the information. Memory refresh is a background maintenance process required during the operation of semiconductor dynamic random-access memory (DRAM), the most widely used type of computer memory, and in fact is the defining characteristic of this class of memory.

CVAX

The CVAX is a microprocessor chip set developed and fabricated by Digital Equipment Corporation (DEC) that implemented the VAX instruction set architecture (ISA). The chip set consisted of the CVAX 78034 CPU, CFPA floating-point accelerator, CVAX clock chip, and the associated support chips, the CVAX System Support Chip (CSSC), CVAX Memory Controller (CMCTL), and CVAX Q-Bus Interface Chip (CQBIC).

Random-access memory Form of computer data storage

Random-access memory is a form of computer memory that can be read and changed in any order, typically used to store working data and machine code. A random-access memory device allows data items to be read or written in almost the same amount of time irrespective of the physical location of data inside the memory. In contrast, with other direct-access data storage media such as hard disks, CD-RWs, DVD-RWs and the older magnetic tapes and drum memory, the time required to read and write data items varies significantly depending on their physical locations on the recording medium, due to mechanical limitations such as media rotation speeds and arm movement.

Thyristor RAM (T-RAM) is a type of random-access memory dating from 2009 invented and developed by T-RAM Semiconductor, which departs from the usual designs of memory cells, combining the strengths of the DRAM and SRAM: high density and high speed. This technology, which exploits the electrical property known as negative differential resistance and is called thin capacitively-coupled thyristor, is used to create memory cells capable of very high packing densities. Due to this, the memory is highly scalable, and already has a storage density that is several times higher than found in conventional six-transistor SRAM memory. It was expected that the next generation of T-RAM memory will have the same density as DRAM.

Z-RAM is a tradename of a now-obsolete dynamic random-access memory technology that did not require a capacitor to maintain its state. Z-RAM was developed between 2002 and 2010 by a now-defunct company named Innovative Silicon.

In modern computer memory, a sense amplifier is one of the elements which make up the circuitry on a semiconductor memory chip ; the term itself dates back to the era of magnetic core memory. A sense amplifier is part of the read circuitry that is used when data is read from the memory; its role is to sense the low power signals from a bitline that represents a data bit stored in a memory cell, and amplify the small voltage swing to recognizable logic levels so the data can be interpreted properly by logic outside the memory.

Memory cell (computing) Part of computer memory

The memory cell is the fundamental building block of computer memory. The memory cell is an electronic circuit that stores one bit of binary information and it must be set to store a logic 1 and reset to store a logic 0. Its value is maintained/stored until it is changed by the set/reset process. The value in the memory cell can be accessed by reading it.

Row hammer is a security exploit that takes advantage of an unintended and undesirable side effect in dynamic random-access memory (DRAM) in which memory cells interact electrically between themselves by leaking their charges, possibly changing the contents of nearby memory rows that were not addressed in the original memory access. This circumvention of the isolation between DRAM memory cells results from the high cell density in modern DRAM, and can be triggered by specially crafted memory access patterns that rapidly activate the same memory rows numerous times.

References