This article needs additional citations for verification .(September 2007) |
nvSRAM is a type of non-volatile random-access memory (NVRAM). [1] [2] nvSRAM extends the functionality of basic SRAM by adding non-volatile storage such as an EEPROM to the SRAM chip. In operation, data is written to and read from the SRAM portion with high-speed access; the data in SRAM can then be stored into or retrieved from the non-volatile storage at lower speeds when needed.
nvSRAM is one of the advanced NVRAM technologies that are fast replacing the battery-backed static random-access memory (BBSRAM), especially for applications that need battery-free solutions and long-term retention at SRAM speeds. nvSRAMs are used in a wide range of situations: networking, aerospace, and medical, among many others [3] where the preservation of data is critical and where batteries are impractical.
nvSRAM is faster than EPROM and EEPROM solutions.[ citation needed ]
When reading and writing data, a nvSRAM acts no differently than a standard asynchronous SRAM. The attached processor or controller sees an 8-bit SRAM interface and nothing else. An added STORE operation stores data that is in an SRAM array in the non-volatile part. Cypress and Simtek nvSRAM have three ways to store data in the non-volatile area. They are:
SONOS is a cross-sectional structure of MOSFET used in Non-volatile memory such as EEPROM and flash memories. nvSRAM combines the standard SRAM cells with EEPROM cells in SONOS technology [4] to provide a fast read/write access and 20 years of data retention without power. The SRAM cells are paired one-to-one with EEPROM cells. The nvSRAMs are in the CMOS process, with the EEPROM cells having a SONOS stack to provide nonvolatile storage. When normal power is applied, the device looks and behaves in a similar manner as a standard SRAM. However, when power drops out, each cell’s contents can be stored automatically in the nonvolatile element positioned above the SRAM cell. This nonvolatile element uses standard CMOS process technology to obtain the high performance of standard SRAMs. In addition, the SONOS technology is highly reliable and supports 1 million STORE operations
The SONOS memory [5] uses an insulating layer such as silicon nitride with traps as the charge storage layer. The traps in the nitride capture the carriers injected from the channel and retain the charge. This type of memory is also known as “Charge Trap Memory.” Since the charge storage layer is an insulator, this storage mechanism is inherently less sensitive to the tunnel oxide defects and is more robust for data retention. In SONOS, the Oxide-Nitride-Oxide(ONO) stack is engineered to maximize the charge-trapping efficiency during erase and program operations and minimize the charge loss during the retention by controlling the deposition parameters in the ONO formation.
Advantages of SONOS technology:
nvSRAM | BBSRAM | Ferroelectric RAM | Magnetoresistive random-access memory | |
---|---|---|---|---|
Technique | Has non-volatile elements along with high performance SRAM | Has a lithium energy source for power when external power is off | Has a ferroelectric crystal between two electrodes to form a capacitor. The moment of atoms on application of electric field is used to store data | Similar to ferroelectric RAM, but the atoms align themselves in the direction of an external magnetic force. This effect is used to store data |
Data retention | 20 yrs | 7 yrs, dependent on battery and ambient temperature | 10 yrs | 20 yrs |
Endurance | Unlimited while powered | Limited to battery life | 1010 to 1014 [6] [7] | 108 [8] |
Store mechanism | Autostore initiated when VCC power down is detected. | Chip enable must be maintained at high logic to prevent inadvertent read/writes. | Static operation. Data is stored in the non-volatile part only. | |
Power up data restore | Non-volatile data is made available automatically in the SRAM. | SRAM will switch from battery to VCC. | ||
Substitution with SRAM | nvSRAM can be substituted for SRAM with minor board modification to add external capacitor. | Provision for battery necessitates board redesign to accommodate a bigger size for the battery | Some parts are pin-to-pin compatible with existing SRAMs. | Pin-to-pin compatible with existing SRAMs |
Soldering | Standard SMT used | Reflow solder cannot be done with battery installed as batteries may explode. | Standard SMT used | |
Speed (best) | 15–45 ns | 70–100 ns | 55 ns | 35 ns |
Computer memory stores information, such as data and programs, for immediate use in the computer. The term memory is often synonymous with the terms RAM,main memory, or primary storage. Archaic synonyms for main memory include core and store.
A programmable read-only memory (PROM) is a form of digital memory where the contents can be changed once after manufacture of the device. The data is then permanent and cannot be changed. It is one type of read-only memory (ROM). PROMs are used in digital electronic devices to store permanent data, usually low level programs such as firmware or microcode. The key difference from a standard ROM is that the data is written into a ROM during manufacture, while with a PROM the data is programmed into them after manufacture. Thus, ROMs tend to be used only for large production runs with well-verified data. PROMs may be used where the volume required does not make a factory-programmed ROM economical, or during development of a system that may ultimately be converted to ROMs in a mass produced version.
Flash memory is an electronic non-volatile computer memory storage medium that can be electrically erased and reprogrammed. The two main types of flash memory, NOR flash and NAND flash, are named for the NOR and NAND logic gates. Both use the same cell design, consisting of floating gate MOSFETs. They differ at the circuit level depending on whether the state of the bit line or word lines is pulled high or low: in NAND flash, the relationship between the bit line and the word lines resembles a NAND gate; in NOR flash, it resembles a NOR gate.
EEPROM or E2PROM (electrically erasable programmable read-only memory) is a type of non-volatile memory. It is used in computers, usually integrated in microcontrollers such as smart cards and remote keyless systems, or as a separate chip device, to store relatively small amounts of data by allowing individual bytes to be erased and reprogrammed.
Static random-access memory is a type of random-access memory (RAM) that uses latching circuitry (flip-flop) to store each bit. SRAM is volatile memory; data is lost when power is removed.
An EPROM, or erasable programmable read-only memory, is a type of programmable read-only memory (PROM) chip that retains its data when its power supply is switched off. Computer memory that can retrieve stored data after a power supply has been turned off and back on is called non-volatile. It is an array of floating-gate transistors individually programmed by an electronic device that supplies higher voltages than those normally used in digital circuits. Once programmed, an EPROM can be erased by exposing it to strong ultraviolet (UV) light source. EPROMs are easily recognizable by the transparent fused quartz window on the top of the package, through which the silicon chip is visible, and which permits exposure to ultraviolet light during erasing.
Non-volatile random-access memory (NVRAM) is random-access memory that retains data without applied power. This is in contrast to dynamic random-access memory (DRAM) and static random-access memory (SRAM), which both maintain data only for as long as power is applied, or forms of sequential-access memory such as magnetic tape, which cannot be randomly accessed but which retains data indefinitely without electric power.
Magnetoresistive random-access memory (MRAM) is a type of non-volatile random-access memory which stores data in magnetic domains. Developed in the mid-1980s, proponents have argued that magnetoresistive RAM will eventually surpass competing technologies to become a dominant or even universal memory. Currently, memory technologies in use such as flash RAM and DRAM have practical advantages that have so far kept MRAM in a niche role in the market.
Non-volatile memory (NVM) or non-volatile storage is a type of computer memory that can retain stored information even after power is removed. In contrast, volatile memory needs constant power in order to retain data.
Nano-RAM is a proprietary computer memory technology from the company Nantero. It is a type of nonvolatile random-access memory based on the position of carbon nanotubes deposited on a chip-like substrate. In theory, the small size of the nanotubes allows for very high density memories. Nantero also refers to it as NRAM.
Semiconductor memory is a digital electronic semiconductor device used for digital data storage, such as computer memory. It typically refers to devices in which data is stored within metal–oxide–semiconductor (MOS) memory cells on a silicon integrated circuit memory chip. There are numerous different types using different semiconductor technologies. The two main types of random-access memory (RAM) are static RAM (SRAM), which uses several transistors per memory cell, and dynamic RAM (DRAM), which uses a transistor and a MOS capacitor per cell. Non-volatile memory uses floating-gate memory cells, which consist of a single floating-gate transistor per cell.
Ferroelectric RAM is a random-access memory similar in construction to DRAM but using a ferroelectric layer instead of a dielectric layer to achieve non-volatility. FeRAM is one of a growing number of alternative non-volatile random-access memory technologies that offer the same functionality as flash memory. An FeRAM chip contains a thin film of ferroelectric material, often lead zirconate titanate, commonly referred to as PZT. The atoms in the PZT layer change polarity in an electric field, thereby producing a power-efficient binary switch. However, the most important aspect of the PZT is that it is not affected by power disruption or magnetic interference, making FeRAM a reliable nonvolatile memory.
Nonvolatile BIOS memory refers to a small memory on PC motherboards that is used to store BIOS settings. It is traditionally called CMOS RAM because it uses a volatile, low-power complementary metal–oxide–semiconductor (CMOS) SRAM powered by a small "CMOS" battery when system and standby power is off. It is referred to as non-volatile memory or NVRAM because, after the system loses power, it does retain state by virtue of the CMOS battery.
The floating-gate MOSFET (FGMOS), also known as a floating-gate MOS transistor or floating-gate transistor, is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) where the gate is electrically isolated, creating a floating node in direct current, and a number of secondary gates or inputs are deposited above the floating gate (FG) and are electrically isolated from it. These inputs are only capacitively connected to the FG. Since the FG is surrounded by highly resistive material, the charge contained in it remains unchanged for long periods of time, typically longer than 10 years in modern devices. Usually Fowler-Nordheim tunneling and hot-carrier injection mechanisms are used to modify the amount of charge stored in the FG.
Charge trap flash (CTF) is a semiconductor memory technology used in creating non-volatile NOR and NAND flash memory. It is a type of floating-gate MOSFET memory technology, but differs from the conventional floating-gate technology in that it uses a silicon nitride film to store electrons rather than the doped polycrystalline silicon typical of a floating-gate structure. This approach allows memory manufacturers to reduce manufacturing costs five ways:
SONOS, short for "silicon–oxide–nitride–oxide–silicon", more precisely, "polycrystalline silicon"—"silicon dioxide"—"silicon nitride"—"silicon dioxide"—"silicon", is a cross sectional structure of MOSFET (metal–oxide–semiconductor field-effect transistor), realized by P.C.Y. Chen of Fairchild Camera and Instrument in 1977. This structure is often used for non-volatile memories, such as EEPROM and flash memories. It is sometimes used for TFT LCD displays. It is one of CTF (charge trap flash) variants. It is distinguished from traditional non-volatile memory structures by the use of silicon nitride (Si3N4 or Si9N10) instead of "polysilicon-based FG (floating-gate)" for the charge storage material. A further variant is "SHINOS" ("silicon"—"hi-k"—"nitride"—"oxide"—"silicon"), which is substituted top oxide layer with high-κ material. Another advanced variant is "MONOS" ("metal–oxide–nitride–oxide–silicon"). Companies offering SONOS-based products include Cypress Semiconductor, Macronix, Toshiba, United Microelectronics Corporation and Floadia.
Simtek Corporation, headquartered in Colorado Springs, CO, was an early leader in the development of SONOS memory technology which it used in its nvSRAM product line which featured a SONOS Flash memory coupled with an SRAM shadow memory to achieve both speed and non-volatility. The company was acquired by Cypress Semiconductor in September 2008. Simtek was a fabless company that relied on wafer foundry manufacturing support from Chartered Semiconductor, DongBu HiTek, and Cypress.
Read-only memory (ROM) is a type of non-volatile memory used in computers and other electronic devices. Data stored in ROM cannot be electronically modified after the manufacture of the memory device. Read-only memory is useful for storing software that is rarely changed during the life of the system, also known as firmware. Software applications, such as video games, for programmable devices can be distributed as plug-in cartridges containing ROM.
The memory cell is the fundamental building block of computer memory. The memory cell is an electronic circuit that stores one bit of binary information and it must be set to store a logic 1 and reset to store a logic 0. Its value is maintained/stored until it is changed by the set/reset process. The value in the memory cell can be accessed by reading it.
The metal–nitride–oxide–semiconductor or metal–nitride–oxide–silicon (MNOS) transistor is a type of MOSFET in which the oxide layer is replaced by a double layer of nitride and oxide. It is an alternative and supplement to the existing standard MOS technology, wherein the insulation employed is a nitride-oxide layer. It is used in non-volatile computer memory.