Parts of this article (those related to the current state of the art) need to be updated.(September 2020) |
External image | |
---|---|
Photo of the interior of a clean room of a 300mm fab run by TSMC |
In the microelectronics industry, a semiconductor fabrication plant, also called a fab or a foundry, is a factory where integrated circuits (ICs) are manufactured. [1]
The cleanroom is where all fabrication takes place and contains the machinery for integrated circuit production such as steppers and/or scanners for photolithography, etching, cleaning, and doping. All these devices are extremely precise and thus extremely expensive.
Prices for pieces of equipment for the processing of 300 mm wafers range to upwards of $4,000,000 each with a few pieces of equipment reaching as high as $340,000,000 (e.g. EUV scanners). A typical fab will have several hundred equipment items. Semiconductor fabrication requires many expensive devices. Estimates put the cost of building a new fab at over one billion U.S. dollars with values as high as $3–4 billion not being uncommon. For example, TSMC invested $9.3 billion in its Fab15 in Taiwan. [2] The same company estimations suggest that their future fab might cost $20 billion. [3]
A foundry model emerged in the 1990s: Companies owning fabs that produced their own designs were known as integrated device manufacturers (IDMs). Companies that outsourced manufacturing of their designs were termed fabless semiconductor companies . Those foundries which did not create their own designs were called pure-play semiconductor foundries . [4]
In the cleanroom, the environment is controlled to eliminate all dust, since even a single speck can ruin a microcircuit, which has nanoscale features much smaller than dust particles. The clean room must also be damped against vibration to enable nanometer-scale alignment of photolithography machines and must be kept within narrow bands of temperature and humidity. Vibration control may be achieved by using deep piles in the cleanroom's foundation that anchor the cleanroom to the bedrock, careful selection of the construction site, and/or using vibration dampers. Controlling temperature and humidity is critical for minimizing static electricity. Corona discharge sources can also be used to reduce static electricity.
Often, a fab will be constructed in the following manner (from top to bottom): the roof, which may contain air handling equipment that draws, purifies and cools outside air, an air plenum for distributing the air to several floor-mounted fan filter units, which are also part of the cleanroom's ceiling, the cleanroom itself, which may or may not have more than one story, [5] a return air plenum, the clean subfab that may contain support equipment for the machines in the cleanroom such as chemical delivery, purification, recycling and destruction systems, and the ground floor, that may contain electrical equipment. Fabs also often have some office space.
Typically an advance in chip-making technology requires a completely new fab to be built. In the past, the equipment to outfit a fab was not very expensive and there were a huge number of smaller fabs producing chips in small quantities. However, the cost of the most up-to-date equipment has since grown to the point where a new fab can cost several billion dollars.
Another side effect of the cost has been the challenge to make use of older fabs. For many companies these older fabs are useful for producing designs for unique markets, such as embedded processors, flash memory, and microcontrollers. However, for companies with more limited product lines, it is often best to either rent out the fab, or close it entirely. This is due to the tendency of the cost of upgrading an existing fab to produce devices requiring newer technology to exceed the cost of a completely new fab.
There has been a trend to produce ever larger wafers, so each process step is being performed on more and more chips at once. The goal is to spread production costs (chemicals, fab time) over a larger number of saleable chips. It is impossible (or at least impracticable) to retrofit machinery to handle larger wafers. This is not to say that foundries using smaller wafers are necessarily obsolete; older foundries can be cheaper to operate, have higher yields for simple chips and still be productive.
The industry was aiming to move from the state-of-the-art wafer size 300 mm (12 in) to 450 mm by 2018. [6] In March 2014, Intel expected 450 mm deployment by 2020. [7] But in 2016, corresponding joint research efforts were stopped. [8]
Additionally, there is a large push to completely automate the production of semiconductor chips from beginning to end. This is often referred to as the "lights-out fab" concept.
The International Sematech Manufacturing Initiative (ISMI), an extension of the US consortium SEMATECH, is sponsoring the "300 mm Prime" initiative. An important goal of this initiative is to enable fabs to produce greater quantities of smaller chips as a response to shorter lifecycles seen in consumer electronics. The logic is that such a fab can produce smaller lots more easily and can efficiently switch its production to supply chips for a variety of new electronic devices. Another important goal is to reduce the waiting time between processing steps. [9] [10]
{{cite web}}
: CS1 maint: unfit URL (link)Semiconductor device fabrication is the process used to manufacture semiconductor devices, typically integrated circuits (ICs) such as microprocessors, microcontrollers, and memories. It is a multiple-step photolithographic and physico-chemical process during which electronic circuits are gradually created on a wafer, typically made of pure single-crystal semiconducting material. Silicon is almost always used, but various compound semiconductors are used for specialized applications.
In electronics, a wafer is a thin slice of semiconductor, such as a crystalline silicon, used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells.
STMicroelectronics NV is a European multinational semiconductor contract manufacturing and design company. It is the largest of such companies in Europe. It was founded in 1987 from the merger of two state-owned semiconductor corporations: Thomson Semiconducteurs of France and SGS Microelettronica of Italy. The company is incorporated in the Netherlands and headquartered in Plan-les-Ouates, Switzerland. Its shares are traded on Euronext Paris, the Borsa Italiana and the New York Stock Exchange.
Taiwan Semiconductor Manufacturing Company Limited is a Taiwanese multinational semiconductor contract manufacturing and design company. It is the world's most valuable semiconductor company, the world's largest dedicated independent ("pure-play") semiconductor foundry, and Taiwan's largest company, with headquarters and main operations located in the Hsinchu Science Park in Hsinchu, Taiwan. Although the central government of Taiwan is the largest individual shareholder, the majority of TSMC is owned by foreign investors. In 2023, the company was ranked 44th in the Forbes Global 2000. Taiwan's exports of integrated circuits amounted to $184 billion in 2022, accounted for nearly 25 percent of Taiwan's GDP. TSMC constitutes about 30 percent of the Taiwan Stock Exchange's main index.
The semiconductor industry is the aggregate of companies engaged in the design and fabrication of semiconductors and semiconductor devices, such as transistors and integrated circuits. It's roots can be traced to the invention of the transistor by Shockley, Brattain, and Bardeen at Bell Labs in 1948. Bell Labs licensed the technology for $25,000, and soon many companies, including Motorola (1952), Schockley Semiconductor (1955), Sylvania, Centralab, Fairchild Semiconductor and Texas Instruments were making transistors. In 1958 Jack Kilby of Texas Instruments and Robert Noyce of Fairchild independently invented the Integrated Circuit, a method of producing multiple transistors on a single "chip" of Semiconductor material. This kicked off a number of rapid advances in fabrication technology leading to the exponential growth in semiconductor device production, known as Moore's law that has persisted over the past six or so decades. The industry's annual semiconductor sales revenue has since grown to over $481 billion, as of 2018.
The foundry model is a microelectronics engineering and manufacturing business model consisting of a semiconductor fabrication plant, or foundry, and an integrated circuit design operation, each belonging to separate companies or subsidiaries. It was first conceived by Morris Chang, the founder of the Taiwan Semiconductor Manufacturing Company Limited (TSMC).
Fabless manufacturing is the design and sale of hardware devices and semiconductor chips while outsourcing their fabrication to a specialized manufacturer called a semiconductor foundry. These foundries are typically, but not exclusively, located in the United States, mainland China, and Taiwan. Fabless companies can benefit from lower capital costs while concentrating their research and development resources on the end market. Some fabless companies and pure play foundries may offer integrated-circuit design services to third parties.
Wafer fabrication is a procedure composed of many repeated sequential processes to produce complete electrical or photonic circuits on semiconductor wafers in semiconductor device fabrication process. Examples include production of radio frequency (RF) amplifiers, LEDs, optical computer components, and microprocessors for computers. Wafer fabrication is used to build components with the necessary electrical structures.
Chartered Semiconductor Manufacturing, Inc. (CSM), was a Singaporean semiconductor company.
An integrated device manufacturer (IDM) is a semiconductor company which designs, manufactures, and sells integrated circuit (IC) products.
SEMATECH was a not-for-profit consortium that performed research and development to advance chip manufacturing. SEMATECH involved collaboration between various sectors of the R&D community, including chipmakers, equipment and material suppliers, universities, research institutes, and government partners. SEMATECH’s mission was to rejuvenate the U.S. semiconductor industry through collective R&D efforts, focused on improving manufacturing processes and introducing cutting-edge technologies.
The X-FAB Silicon Foundries is a group of semiconductor foundries. The group specializes in the fabrication of analog and mixed-signal integrated circuits for fabless semiconductor companies, as well as MEMS and solutions for high voltage applications. The holding company named "X-FAB Silicon Foundries SE" is based in Tessenderlo, Belgium while its headquarters is located in Erfurt, Germany.
Multi-project chip (MPC), and multi-project wafer (MPW) semiconductor manufacturing arrangements allow customers to share tooling and microelectronics wafer fabrication cost between several designs or projects.
The term die shrink refers to the scaling of metal–oxide–semiconductor (MOS) devices. The act of shrinking a die creates a somewhat identical circuit using a more advanced fabrication process, usually involving an advance of lithographic nodes. This reduces overall costs for a chip company, as the absence of major architectural changes to the processor lowers research and development costs while at the same time allowing more processor dies to be manufactured on the same piece of silicon wafer, resulting in less cost per product sold.
Systems on Silicon Manufacturing Company Pte. Ltd. is a Singaporean semiconductor fabrication company located in Pasir Ris Wafer Fab Park. It was incorporated in 1999 and is a joint venture between NXP Semiconductors and TSMC. Founded by Philips and EDB Investments, the plant was completed in 2000.
GlobalFoundries Inc. is a multinational semiconductor contract manufacturing and design company incorporated in the Cayman Islands and headquartered in Malta, New York. Created by the divestiture of the manufacturing arm of AMD, the company was privately owned by Mubadala Investment Company, a sovereign wealth fund of the United Arab Emirates, until an initial public offering (IPO) in October 2021.
Semiconductor consolidation is the trend of semiconductor companies collaborating in order to come to a practical synergy with the goal of being able to operate in a business model that can sustain profitability.
Tower Semiconductor Ltd. is an Israeli company that manufactures integrated circuits using specialty process technologies, including SiGe, BiCMOS, Silicon Photonics, SOI, mixed-signal and RFCMOS, CMOS image sensors, non-imaging sensors, power management (BCD), and non-volatile memory (NVM) as well as MEMS capabilities. Tower Semiconductor also owns 51% of TPSCo, an enterprise with Nuvoton Technology Corporation Japan (NTCJ).
Glossary of microelectronics manufacturing terms