Electronic switching system

Last updated

In telecommunications, an electronic switching system (ESS) is a telephone switch that uses solid-state electronics, such as digital electronics and computer ized common control, to interconnect telephone circuits for the purpose of establishing telephone calls.

The generations of telephone switches before the advent of electronic switching in the 1950s used purely electro-mechanical relay systems and analog voice paths. These early machines typically utilized the step-by-step technique. The first generation of electronic switching systems in the 1960s were not entirely digital in nature, but used reed relay-operated metallic paths or crossbar switches operated by stored program control (SPC) systems.

First announced in 1955, the first customer trial installation of an all-electronic central office commenced in Morris, Illinois in November 1960 by Bell Laboratories. [1] The first large-scale electronic switching system was the Number One Electronic Switching System (1ESS) of the Bell System, cut over in Succasunna, New Jersey, in May 1965.

Just three years later, in September 1968, Britain's Post Office opened the world's first all-digital pulse-code modulation (PCM) exchange named Empress (three decades after British scientist Alec Reeves had invented the PCM encoding system without the digital components to take full advantage). [2] Other nations vying to reach the forefront of technical innovation would adopt metal–oxide–semiconductor (MOS) and PCM technologies to make their own transitions from analog to digital telephony throughout the '70s. [3] [4] Later electronic switching systems implemented the digital representation of the electrical audio signals on subscriber loops by digitizing the analog signals and processing the resulting data for transmission between central offices. Time-division multiplexing (TDM) technology permitted the simultaneous transmission of multiple telephone calls on a single wire connection between central offices or other electronic switches, resulting in dramatic capacity improvements of the telephone network.

With the advances of digital electronics starting in the 1960s telephone switches employed semiconductor device components in increasing measure.

In the late 20th century most telephone exchanges without TDM processing were eliminated and the term electronic switching system became largely a historical distinction for the older SPC systems.

See also

Related Research Articles

<span class="mw-page-title-main">T-carrier</span> Carrier system for digital transmission of multiplexed telephone calls.

The T-carrier is a member of the series of carrier systems developed by AT&T Bell Laboratories for digital transmission of multiplexed telephone calls.

<span class="mw-page-title-main">Time-division multiplexing</span> Multiplexing technique for digital signals

Time-division multiplexing (TDM) is a method of transmitting and receiving independent signals over a common signal path by means of synchronized switches at each end of the transmission line so that each signal appears on the line only a fraction of time according to agreed rules, e.g. with each transmitter working in turn. It can be used when the bit rate of the transmission medium exceeds that of the signal to be transmitted. This form of signal multiplexing was developed in telecommunications for telegraphy systems in the late 19th century but found its most common application in digital telephony in the second half of the 20th century.

Telephony is the field of technology involving the development, application, and deployment of telecommunication services for the purpose of electronic transmission of voice, fax, or data, between distant parties. The history of telephony is intimately linked to the invention and development of the telephone.

Data communication, including data transmission and data reception, is the transfer of data, transmitted and received over a point-to-point or point-to-multipoint communication channel. Examples of such channels are copper wires, optical fibers, wireless communication using radio spectrum, storage media and computer buses. The data are represented as an electromagnetic signal, such as an electrical voltage, radiowave, microwave, or infrared signal.

<span class="mw-page-title-main">Digital audio</span> Technology that records, stores, and reproduces sound

Digital audio is a representation of sound recorded in, or converted into, digital form. In digital audio, the sound wave of the audio signal is typically encoded as numerical samples in a continuous sequence. For example, in CD audio, samples are taken 44,100 times per second, each with 16-bit sample depth. Digital audio is also the name for the entire technology of sound recording and reproduction using audio signals that have been encoded in digital form. Following significant advances in digital audio technology during the 1970s and 1980s, it gradually replaced analog audio technology in many areas of audio engineering, record production and telecommunications in the 1990s and 2000s.

This is an index of articles relating to electronics and electricity or natural electricity and things that run on electricity and things that use or conduct electricity.

<span class="mw-page-title-main">Mixed-signal integrated circuit</span> Integrated circuit

A mixed-signal integrated circuit is any integrated circuit that has both analog circuits and digital circuits on a single semiconductor die. Their usage has grown dramatically with the increased use of cell phones, telecommunications, portable electronics, and automobiles with electronics and digital sensors.

The following outline is provided as an overview of and topical guide to electrical engineering.

This is an alphabetical list of articles pertaining specifically to electrical and electronics engineering. For a thematic list, please see List of electrical engineering topics. For a broad overview of engineering, see List of engineering topics. For biographies, see List of engineers.

Stored program control (SPC) is a telecommunications technology for telephone exchanges. Its characteristic is that the switching system is controlled by a computer program stored in a memory in the switching system. SPC was the enabling technology of electronic switching systems (ESS) developed in the Bell System in the 1950s, and may be considered the third generation of switching technology. Stored program control was invented in 1954 by Bell Labs scientist Erna Schneider Hoover, who reasoned that computer software could control the connection of telephone calls.

In electronics, an electronic switch is a switch controlled by an active electronic component or device. Without using moving parts, they are called solid state switches, which distinguishes them from mechanical switches.

<span class="mw-page-title-main">Highgate Wood telephone exchange</span> First all-electronic exchange in Britain

Highgate Wood telephone exchange was the first all-electronic telephone exchange in Britain. It was built in Grand Avenue, in the London suburb of Muswell Hill, by members of the Joint Electronic Research Council (JERC).

The pulse-code modulation (PCM) technology was patented and developed in France in 1938, but could not be used because suitable technology was not available until World War II. This came about with the arrival of digital systems in the 1960s when improving the performance of communications networks became a real possibility. However, this technology was not completely adopted until the mid-1970s, due to the large amount of analog systems already in place and the high cost of digital systems, as semiconductors were very expensive. PCM's initial goal was to convert an analog voice telephone channel into a digital one based on the sampling theorem.

Pulse-code modulation (PCM) is a method used to digitally represent analog signals. It is the standard form of digital audio in computers, compact discs, digital telephony and other digital audio applications. In a PCM stream, the amplitude of the analog signal is sampled at uniform intervals, and each sample is quantized to the nearest value within a range of digital steps.

<span class="mw-page-title-main">Telephone exchange</span> Interconnects telephones for calls

A telephone exchange, also known as a telephone switch or central office, is a crucial component in the public switched telephone network (PSTN) or large enterprise telecommunications systems. It facilitates the interconnection of telephone subscriber lines or digital system virtual circuits, enabling telephone calls between subscribers.

<span class="mw-page-title-main">Electronic engineering</span> Electronic engineering involved in the design of electronic circuits, devices, and their systems

Electronic engineering is a sub-discipline of electrical engineering that emerged in the early 20th century and is distinguished by the additional use of active components such as semiconductor devices to amplify and control electric current flow. Previously electrical engineering only used passive devices such as mechanical switches, resistors, inductors, and capacitors.

<span class="mw-page-title-main">Digital signal</span> Signal used to represent data as a sequence of discrete values

A digital signal is a signal that represents data as a sequence of discrete values; at any given time it can only take on, at most, one of a finite number of values. This contrasts with an analog signal, which represents continuous values; at any given time it represents a real number within a continuous range of values.

The following outline is provided as an overview of and topical guide to electronics:

This glossary of electrical and electronics engineering is a list of definitions of terms and concepts related specifically to electrical engineering and electronics engineering. For terms related to engineering in general, see Glossary of engineering.

<span class="mw-page-title-main">Sound chip</span> Integrated circuit designed to produce audio signals

A sound chip is an integrated circuit (chip) designed to produce audio signals through digital, analog or mixed-mode electronics. Sound chips are typically fabricated on metal–oxide–semiconductor (MOS) mixed-signal chips that process audio signals. They normally contain audio components such as oscillators, envelope controllers, samplers, filters, amplifiers, and envelope generators.

References

  1. Duhnkrack, George (April 1960). The Electronic Switching System. Bell Telephone Laboratories, Incorporated. p.  1. OL   24657942M.
  2. "Goodbye to the hello girls: Automating the telephone exchange | Science Museum".
  3. Allstot, David J. (2016). "Switched Capacitor Filters". In Maloberti, Franco; Davies, Anthony C. (eds.). A Short History of Circuits and Systems: From Green, Mobile, Pervasive Networking to Big Data Computing (PDF). IEEE Circuits and Systems Society. pp. 105–110. ISBN   9788793609860. Archived (PDF) from the original on 2022-10-09.
  4. Floyd, Michael D.; Hillman, Garth D. (8 October 2018) [1st pub. 2000]. "Pulse-Code Modulation Codec-Filters". The Communications Handbook (2nd ed.). CRC Press. pp. 26–1, 26–2, 26–3. ISBN   9781420041163.