Open data

Last updated

Open data map Lod.png
Open data map
Linked open data cloud in August 2014 LOD Cloud 2014-08.svg
Linked open data cloud in August 2014
Clear labelling of the licensing terms is a key component of open data, and icons like the one pictured here are being used for that purpose. Open Data stickers.jpg
Clear labelling of the licensing terms is a key component of open data, and icons like the one pictured here are being used for that purpose.

Open data are data that are openly accessible, exploitable, editable and shareable by anyone for any purpose. Open data are generally licensed under an open license. [1] [2] [3]

Contents

The goals of the open data movement are similar to those of other "open(-source)" movements such as open-source software, open-source hardware, open content, open specifications, open education, open educational resources, open government, open knowledge, open access, open science, and the open web. The growth of the open data movement is paralleled by a rise in intellectual property rights. [4] The philosophy behind open data has been long established (for example in the Mertonian tradition of science), but the term "open data" itself is recent, gaining popularity with the rise of the Internet and World Wide Web and, especially, with the launch of open-data government initiatives Data.gov, Data.gov.uk and Data.gov.in.

Open data can be linked data—referred to as linked open data.

One of the most important forms of open data is open government data (OGD), which is a form of open data created by ruling government institutions. The importance of open government data is born from it being a part of citizens' everyday lives, down to the most routine and mundane tasks that are seemingly far removed from government.

The abbreviation FAIR/O data is sometimes used to indicate that the dataset or database in question complies with the principles of FAIR data and carries an explicit data‑capable open license.

Overview

The concept of open data is not new, but a formalized definition is relatively new. Open data as a phenomenon denotes that governmental data should be available to anyone with a possibility of redistribution in any form without any copyright restriction. [5] One more definition is the Open Definition which can be summarized as "a piece of data is open if anyone is free to use, reuse, and redistribute it—subject only, at most, to the requirement to attribute and/or share-alike." [6] Other definitions, including the Open Data Institute's "open data is data that anyone can access, use or share," have an accessible short version of the definition but refer to the formal definition. [7] Open data may include non-textual material such as maps, genomes, connectomes, chemical compounds, mathematical and scientific formulae, medical data, and practice, bioscience and biodiversity data.

A major barrier to the open data movement is the commercial value of data. Access to, or re-use of, data is often controlled by public or private organizations. Control may be through access restrictions, licenses, copyright, patents and charges for access or re-use. Advocates of open data argue that these restrictions detract from the common good and that data should be available without restrictions or fees.

Creators of data do not consider the need to state the conditions of ownership, licensing and re-use; instead presuming that not asserting copyright enters the data into the public domain. For example, many scientists do not consider the data published with their work to be theirs to control and consider the act of publication in a journal to be an implicit release of data into the commons. The lack of a license makes it difficult to determine the status of a data set and may restrict the use of data offered in an "Open" spirit. Because of this uncertainty it is possible for public or private organizations to aggregate said data, claim that it is protected by copyright, and then resell it.

Major sources

The State of Open Data, a 2019 book from African Minds The State of Open Data Histories and Horizons.pdf
The State of Open Data, a 2019 book from African Minds

Open data can come from any source. This section lists some of the fields that publish (or at least discuss publishing) a large amount of open data.

In science

The concept of open access to scientific data was established with the formation of the World Data Center system, in preparation for the International Geophysical Year of 1957–1958. [8] The International Council of Scientific Unions (now the International Council for Science) oversees several World Data Centres with the mission to minimize the risk of data loss and to maximize data accessibility. [9]

While the open-science-data movement long predates the Internet, the availability of fast, readily available networking has significantly changed the context of open science data, as publishing or obtaining data has become much less expensive and time-consuming. [10]

The Human Genome Project was a major initiative that exemplified the power of open data. It was built upon the so-called Bermuda Principles, stipulating that: "All human genomic sequence information … should be freely available and in the public domain in order to encourage research and development and to maximize its benefit to society". [11] More recent initiatives such as the Structural Genomics Consortium have illustrated that the open data approach can be used productively within the context of industrial R&D. [12]

In 2004, the Science Ministers of all nations of the Organisation for Economic Co-operation and Development (OECD), which includes most developed countries of the world, signed a declaration which states that all publicly funded archive data should be made publicly available. [13] Following a request and an intense discussion with data-producing institutions in member states, the OECD published in 2007 the OECD Principles and Guidelines for Access to Research Data from Public Funding as a soft-law recommendation. [14]

Examples of open data in science:

In government

There are a range of different arguments for government open data. [19] [20] Some advocates say that making government information available to the public as machine readable open data can facilitate government transparency, accountability and public participation. "Open data can be a powerful force for public accountability—it can make existing information easier to analyze, process, and combine than ever before, allowing a new level of public scrutiny." [21] Governments that enable public viewing of data can help citizens engage within the governmental sectors and "add value to that data." [22] Open data experts have nuanced the impact that opening government data may have on government transparency and accountability. In a widely cited paper, scholars David Robinson and Harlan Yu contend that governments may project a veneer of transparency by publishing machine-readable data that does not actually make government more transparent or accountable. [23] Drawing from earlier studies on transparency and anticorruption, [24] World Bank political scientist Tiago C. Peixoto extended Yu and Robinson's argument by highlighting a minimal chain of events necessary for open data to lead to accountability:

  1. relevant data is disclosed;
  2. the data is widely disseminated and understood by the public;
  3. the public reacts to the content of the data; and
  4. public officials either respond to the public's reaction or are sanctioned by the public through institutional means. [25]

Some make the case that opening up official information can support technological innovation and economic growth by enabling third parties to develop new kinds of digital applications and services. [26]

Several national governments have created websites to distribute a portion of the data they collect. It is a concept for a collaborative project in the municipal Government to create and organize culture for Open Data or Open government data.

Additionally, other levels of government have established open data websites. There are many government entities pursuing Open Data in Canada. Data.gov lists the sites of a total of 40 US states and 46 US cities and counties with websites to provide open data, e.g., the state of Maryland, the state of California, US [27] and New York City. [28]

At the international level, the United Nations has an open data website that publishes statistical data from member states and UN agencies, [29] and the World Bank published a range of statistical data relating to developing countries. [30] The European Commission has created two portals for the European Union: the EU Open Data Portal which gives access to open data from the EU institutions, agencies and other bodies [31] and the European Data Portal that provides datasets from local, regional and national public bodies across Europe. [32] The two portals were consolidated to data.europa.eu on April 21, 2021.

Italy is the first country to release standard processes and guidelines under a Creative Commons license for spread usage in the Public Administration. The open model is called the Open Data Management Cycle and was adopted in several regions such as Veneto and Umbria. [33] [34] [35] Main cities like Reggio Calabria and Genova have also adopted this model.[ citation needed ] [36]

In October 2015, the Open Government Partnership launched the International Open Data Charter, a set of principles and best practices for the release of governmental open data formally adopted by seventeen governments of countries, states and cities during the OGP Global Summit in Mexico. [37]

In July 2024, the OECD adopted Creative Commons CC-BY-4.0 licensing for its published data and reports. [38]

In non-profit organizations

Many non-profit organizations offer open access to their data, as long it does not undermine their users', members' or third party's privacy rights. In comparison to for-profit corporations, they do not seek to monetize their data. OpenNWT launched a website offering open data of elections. [39] CIAT offers open data to anybody who is willing to conduct big data analytics in order to enhance the benefit of international agricultural research. [40] DBLP, which is owned by a non-profit organization Dagstuhl, offers its database of scientific publications from computer science as open data. [41]

Hospitality exchange services, including Bewelcome, Warm Showers, and CouchSurfing (before it became for-profit) have offered scientists access to their anonymized data for analysis, public research, and publication. [42] [43] [44] [45] [46]

Policies and strategies

At a small level, a business or research organization's policies and strategies towards open data will vary, sometimes greatly. One common strategy employed is the use of a data commons. A data commons is an interoperable software and hardware platform that aggregates (or collocates) data, data infrastructure, and data-producing and data-managing applications in order to better allow a community of users to manage, analyze, and share their data with others over both short- and long-term timelines. [47] [48] [49] Ideally, this interoperable cyberinfrastructure should be robust enough "to facilitate transitions between stages in the life cycle of a collection" of data and information resources [47] while still being driven by common data models and workspace tools enabling and supporting robust data analysis. [49] The policies and strategies underlying a data commons will ideally involve numerous stakeholders, including the data commons service provider, data contributors, and data users. [48]

Grossman et al [48] suggests six major considerations for a data commons strategy that better enables open data in businesses and research organizations. Such a strategy should address the need for:

Beyond individual businesses and research centers, and at a more macro level, countries like Germany [50] have launched their own official nationwide open data strategies, detailing how data management systems and data commons should be developed, used, and maintained for the greater public good.

Arguments for and against

Opening government data is only a waypoint on the road to improving education, improving government, and building tools to solve other real-world problems. While many arguments have been made categorically[ citation needed ], the following discussion of arguments for and against open data highlights that these arguments often depend highly on the type of data and its potential uses.

Arguments made on behalf of open data include the following:

It is generally held that factual data cannot be copyrighted. [59] Publishers frequently add copyright statements (often forbidding re-use) to scientific data accompanying publications. It may be unclear whether the factual data embedded in full text are part of the copyright.

While the human abstraction of facts from paper publications is normally accepted as legal there is often an implied restriction on the machine extraction by robots.

Unlike open access, where groups of publishers have stated their concerns, open data is normally challenged by individual institutions.[ citation needed ] Their arguments have been discussed less in public discourse and there are fewer quotes to rely on at this time.

Arguments against making all data available as open data include the following:

The paper entitled "Optimization of Soft Mobility Localization with Sustainable Policies and Open Data" [63] argues that open data is a valuable tool for improving the sustainability and equity of soft mobility in cities. The author argues that open data can be used to identify the needs of different areas of a city, develop algorithms that are fair and equitable, and justify the installation of soft mobility resources.

Relation to other open activities

The goals of the Open Data movement are similar to those of other "Open" movements.

Open Data as commons

Ideas and definitions

Formally both the definition of Open Data and commons revolve around the concept of shared resources with a low barrier to access. Substantially, digital commons include Open Data in that it includes resources maintained online, such as data. [68] Overall, looking at operational principles of Open Data one could see the overlap between Open Data and (digital) commons in practice. Principles of Open Data are sometimes distinct depending on the type of data under scrutiny. [69] Nonetheless, they are somewhat overlapping and their key rationale is the lack of barriers to the re-use of data(sets). [69] Regardless of their origin, principles across types of Open Data hint at the key elements of the definition of commons. These are, for instance, accessibility, re-use, findability, non-proprietarily. [69] Additionally, although to a lower extent, threats and opportunities associated with both Open Data and commons are similar. Synthesizing, they revolve around (risks and) benefits associated with (uncontrolled) use of common resources by a large variety of actors.

The System

Both commons and Open Data can be defined by the features of the resources that fit under these concepts, but they can be defined by the characteristics of the systems their advocates push for. Governance is a focus for both Open Data and commons scholars. [69] [68] The key elements that outline commons and Open Data peculiarities are the differences (and maybe opposition) to the dominant market logics as shaped by capitalism. [68] Perhaps it is this feature that emerges in the recent surge of the concept of commons as related to a more social look at digital technologies in the specific forms of digital and, especially, data commons.

Real-life case

Application of open data for societal good has been demonstrated in academic research works. [70] The paper "Optimization of Soft Mobility Localization with Sustainable Policies and Open Data" uses open data in two ways. First, it uses open data to identify the needs of different areas of a city. For example, it might use data on population density, traffic congestion, and air quality to determine where soft mobility resources, such as bike racks and charging stations for electric vehicles, are most needed. Second, it uses open data to develop algorithms that are fair and equitable. For example, it might use data on the demographics of a city to ensure that soft mobility resources are distributed in a way that is accessible to everyone, regardless of age, disability, or gender. The paper also discusses the challenges of using open data for soft mobility optimization. One challenge is that open data is often incomplete or inaccurate. Another challenge is that it can be difficult to integrate open data from different sources. Despite these challenges, the paper argues that open data is a valuable tool for improving the sustainability and equity of soft mobility in cities.

An exemplification of how the relationship between Open Data and commons and how their governance can potentially disrupt the market logic otherwise dominating big data is a project conducted by Human Ecosystem Relazioni in Bologna (Italy). See: https://www.he-r.it/wp-content/uploads/2017/01/HUB-report-impaginato_v1_small.pdf.

This project aimed at extrapolating and identifying online social relations surrounding “collaboration” in Bologna. Data was collected from social networks and online platforms for citizens collaboration. Eventually data was analyzed for the content, meaning, location, timeframe, and other variables. Overall, online social relations for collaboration were analyzed based on network theory. The resulting dataset have been made available online as Open Data (aggregated and anonymized); nonetheless, individuals can reclaim all their data. This has been done with the idea of making data into a commons. This project exemplifies the relationship between Open Data and commons, and how they can disrupt the market logic driving big data use in two ways. First, it shows how such projects, following the rationale of Open Data somewhat can trigger the creation of effective data commons. The project itself was offering different types of support to social network platform users to have contents removed. Second, opening data regarding online social networks interactions has the potential to significantly reduce the monopolistic power of social network platforms on those data.

Funders' mandates

Several funding bodies that mandate Open Access also mandate Open Data. A good expression of requirements (truncated in places) is given by the Canadian Institutes of Health Research (CIHR): [71]

Other bodies promoting the deposition of data and full text include the Wellcome Trust. An academic paper published in 2013 advocated that Horizon 2020 (the science funding mechanism of the EU) should mandate that funded projects hand in their databases as "deliverables" at the end of the project so that they can be checked for third-party usability and then shared. [72]

See also

Related Research Articles

Research funding is a term generally covering any funding for scientific research, in the areas of natural science, technology, and social science. Different methods can be used to disburse funding, but the term often connotes funding obtained through a competitive process, in which potential research projects are evaluated and only the most promising receive funding. It is often measured via Gross domestic expenditure on R&D (GERD).

<span class="mw-page-title-main">Open educational resources</span> Open learning resource

Open educational resources (OER) are teaching, learning, and research materials intentionally created and licensed to be free for the end user to own, share, and in most cases, modify. The term "OER" describes publicly accessible materials and resources for any user to use, re-mix, improve, and redistribute under some licenses. These are designed to reduce accessibility barriers by implementing best practices in teaching and to be adapted for local unique contexts.

<span class="mw-page-title-main">Grey literature</span> Documents and research not produced for commercial or academic journal purposes

Grey literature is material and research produced by organizations outside of the traditional commercial or academic publishing and distribution channels. Common grey literature publication types include reports, working papers, government documents, white papers and evaluations. Organizations that produce grey literature include government departments and agencies, civil society or non-governmental organizations, academic centres and departments, and private companies and consultants.

<span class="mw-page-title-main">Open science</span> Generally available scientific research

Open science is the movement to make scientific research and its dissemination accessible to all levels of society, amateur or professional. Open science is transparent and accessible knowledge that is shared and developed through collaborative networks. It encompasses practices such as publishing open research, campaigning for open access, encouraging scientists to practice open-notebook science, broader dissemination and engagement in science and generally making it easier to publish, access and communicate scientific knowledge.

Open government is the governing doctrine which maintains that citizens have the right to access the documents and proceedings of the government to allow for effective public oversight. In its broadest construction, it opposes reason of state and other considerations which have tended to legitimize extensive state secrecy. The origins of open-government arguments can be dated to the time of the European Age of Enlightenment, when philosophers debated the proper construction of a then nascent democratic society. It is also increasingly being associated with the concept of democratic reform. The United Nations Sustainable Development Goal 16 for example advocates for public access to information as a criterion for ensuring accountable and inclusive institutions.

Research data archiving is the long-term storage of scholarly research data, including the natural sciences, social sciences, and life sciences. The various academic journals have differing policies regarding how much of their data and methods researchers are required to store in a public archive, and what is actually archived varies widely between different disciplines. Similarly, the major grant-giving institutions have varying attitudes towards public archiving of data. In general, the tradition of science has been for publications to contain sufficient information to allow fellow researchers to replicate and therefore test the research. In recent years this approach has become increasingly strained as research in some areas depends on large datasets which cannot easily be replicated independently.

<span class="mw-page-title-main">Free content</span> Nonrestrictive creative work

Free content, libre content, libre information, or free information is any kind of creative work, such as a work of art, a book, a software program, or any other creative content for which there are very minimal copyright and other legal limitations on usage, modification and distribution. These are works or expressions which can be freely studied, applied, copied and modified by anyone for any purpose including, in some cases, commercial purposes. Free content encompasses all works in the public domain and also those copyrighted works whose licenses honor and uphold the definition of free cultural work.

<span class="mw-page-title-main">German National Library of Economics</span> Research library of economics

The National Library of Economics is the world's largest research infrastructure for economic literature, online as well as offline. The ZBW is a member of the Leibniz Association and has been a foundation under public law since 2007. Several times the ZBW received the international LIBER Award for its innovative work in librarianship. The ZBW allows for access of millions of documents and research on economics, partnering with over 40 research institutions to create a connective Open Access portal and social web of research. Through its EconStor and EconBiz, researchers and students have accessed millions of datasets and thousands of articles. The ZBW also edits two journals: Wirtschaftsdienst and Intereconomics.

Open scientific data or open research data is a type of open data focused on publishing observations and results of scientific activities available for anyone to analyze and reuse. A major purpose of the drive for open data is to allow the verification of scientific claims, by allowing others to look at the reproducibility of results, and to allow data from many sources to be integrated to give new knowledge.

A memory institution is an organization maintaining a repository of public knowledge, a generic term used about institutions such as libraries, archives, heritage institutions, aquaria and arboreta, and zoological and botanical gardens, as well as providers of digital libraries and data aggregation services which serve as memories for given societies or mankind. Memory institutions serve the purpose of documenting, contextualizing, preserving and indexing elements of human culture and collective memory. These institutions allow and enable society to better understand themselves, their past, and how the past impacts their future. These repositories are ultimately preservers of communities, languages, cultures, customs, tribes, and individuality. Memory institutions are repositories of knowledge, while also being actors of the transitions of knowledge and memory to the community. These institutions ultimately remain some form of collective memory. Increasingly such institutions are considered as a part of a unified documentation and information science perspective.

The digital commons are a form of commons involving the distribution and communal ownership of informational resources and technology. Resources are typically designed to be used by the community by which they are created.

<span class="mw-page-title-main">Panton Principles</span>

The Panton Principles are a set of principles which were written to promote open science. They were first drafted in July 2009 at the Panton Arms pub in Cambridge.

Data publishing is the act of releasing research data in published form for use by others. It is a practice consisting in preparing certain data or data set(s) for public use thus to make them available to everyone to use as they wish. This practice is an integral part of the open science movement. There is a large and multidisciplinary consensus on the benefits resulting from this practice.

In natural language processing, linguistics, and neighboring fields, Linguistic Linked Open Data (LLOD) describes a method and an interdisciplinary community concerned with creating, sharing, and (re-)using language resources in accordance with Linked Data principles. The Linguistic Linked Open Data Cloud was conceived and is being maintained by the Open Linguistics Working Group (OWLG) of the Open Knowledge Foundation, but has been a point of focal activity for several W3C community groups, research projects, and infrastructure efforts since then.

Open energy system database projects employ open data methods to collect, clean, and republish energy-related datasets for open use. The resulting information is then available, given a suitable open license, for statistical analysis and for building numerical energy system models, including open energy system models. Permissive licenses like Creative Commons CC0 and CC BY are preferred, but some projects will house data made public under market transparency regulations and carrying unqualified copyright.

<span class="mw-page-title-main">FAIR data</span> Data compliant with the terms of the FAIR Data Principles

FAIR data is data which meets the FAIR principles of findability, accessibility, interoperability, and reusability (FAIR). The acronym and principles were defined in a March 2016 paper in the journal Scientific Data by a consortium of scientists and organizations.

<span class="mw-page-title-main">Open source</span> Source code made freely available

Open source is source code that is made freely available for possible modification and redistribution. Products include permission to use and view the source code, design documents, or content of the product. The open source model is a decentralized software development model that encourages open collaboration. A main principle of open source software development is peer production, with products such as source code, blueprints, and documentation freely available to the public. The open source movement in software began as a response to the limitations of proprietary code. The model is used for projects such as in open source appropriate technology, and open source drug discovery.

Data collaboratives are a form of collaboration in which participants from different sectors—including private companies, research institutions, and government agencies—can exchange data and data expertise to help solve public problems.

<span class="mw-page-title-main">Open Science Infrastructure</span> Systems and services that enable open science

Open Science Infrastructure is an information infrastructure that supports the open sharing of scientific productions such as publications, datasets, metadata or code. In November 2021 the Unesco recommendation on Open Science describe it as "shared research infrastructures that are needed to support open science and serve the needs of different communities".

The economics of open science describe the economic aspects of making a wide range of scientific outputs to all levels of society.

References

  1. "What is open?". okfn.org. Retrieved 22 March 2022.
  2. "Open Definition 2.1 - Open Definition - Defining Open in Open Data, Open Content and Open Knowledge". opendefinition.org. Retrieved 22 March 2022.
  3. Auer, S. R.; Bizer, C.; Kobilarov, G.; Lehmann, J.; Cyganiak, R.; Ives, Z. (2007). "DBpedia: A Nucleus for a Web of Open Data". The Semantic Web. Lecture Notes in Computer Science. Vol. 4825. pp. 722–735. doi:10.1007/978-3-540-76298-0_52. ISBN   978-3-540-76297-3. S2CID   7278297.
  4. Kitchin, Rob (2014). The Data Revolution. London: Sage. p. 49. ISBN   978-1-4462-8748-4.
  5. Kassen, Maxat (1 October 2013). "A promising phenomenon of open data: A case study of the Chicago open data project". Government Information Quarterly. 30 (4): 508–513. doi:10.1016/j.giq.2013.05.012. ISSN   0740-624X.
  6. See Open Definition home page and the full Open Definition
  7. "What is 'open data' and why should we care? – The ODI". 3 November 2017. Retrieved 1 September 2021.
  8. Committee on Scientific Accomplishments of Earth Observations from Space, National Research Council (2008). Earth Observations from Space: The First 50 Years of Scientific Achievements. The National Academies Press. p. 6. doi:10.17226/11991. ISBN   978-0-309-11095-2 . Retrieved 24 November 2010.
  9. World Data System (27 September 2017). "Data Sharing Principles". www.icsu-wds.org. ICSU-WDS (International Council for Science - World Data Service). Retrieved 27 September 2017.
  10. Vuong, Quan-Hoang (12 December 2017). "Open data, open review and open dialogue in making social sciences plausible". Nature: Scientific Data Updates. arXiv: 1712.04801 . Bibcode:2017arXiv171204801V . Retrieved 30 June 2018.
  11. Human Genome Project, 1996. Summary of Principles Agreed Upon at the First International Strategy Meeting on Human Genome Sequencing (Bermuda, 25–28 February 1996)
  12. Perkmann, Markus; Schildt, Henri (2015). "Open Data Partnerships between Firms and Universities: The Role of Boundary Organizations". Research Policy. 44 (5): 1133–1143. doi: 10.1016/j.respol.2014.12.006 . hdl: 10044/1/19450 .
  13. OECD Declaration on Open Access to publicly funded data Archived 20 April 2010 at the Wayback Machine
  14. Pilat, D.; Fukasaku (29 June 2007). "OECD Principles and Guidelines for Access to Research Data from Public Funding". Data Science Journal. 6: 4–11. doi: 10.2481/dsj.6.OD4 . Retrieved 31 January 2024.
  15. "Dataverse Network Project". Archived from the original on 9 October 2014. Retrieved 10 October 2014.
  16. "Data". Linked Science. 17 October 2012. Archived from the original on 17 October 2012. Retrieved 1 September 2021.
  17. Kauppinen, Tomi; de Espindola, Giovanna Mira (2011). Linked Open Science—Communicating, Sharing and Evaluating Data, Methods and Results for Executable Papers (PDF). International Conference on Computational Science, ICCS 2011. Vol. 4. Procedia Computer Science.
  18. "Home". Wildlife DataSets, Animal Population DataSets and Conservation Research Projects, Surveys - Systema Naturae. Retrieved 1 September 2021.
  19. Gray, Jonathan (3 September 2014). Towards a Genealogy of Open Data. General Conference of the European Consortium for Political Research in Glasgow. doi:10.2139/ssrn.2605828. SSRN   2605828 via SSRN.
  20. Brito, Jerry (21 October 2007). "Hack, Mash, & Peer: Crowdsourcing Government Transparency". Columbia Science & Technology Law Review. 9: 119. doi:10.2139/SSRN.1023485. S2CID   109457712. SSRN   1023485.
  21. Yu, Harlan; Robinson, David G. (28 February 2012). "The New Ambiguity of 'Open Government'". UCLA Law Review Discourse. 59. doi:10.2139/ssrn.2012489. SSRN   2012489 via Social Science Research Network.
  22. Robinson, David G.; Yu, Harlan; Zeller, William P.; Felten, Edward W. (1 January 2009). "Government Data and the Invisible Hand". Yale Journal of Law & Technology. 11. Rochester, NY. SSRN   1138083 via Social Science Research Network.
  23. uclalaw (8 August 2012). "The New Ambiguity of "Open Government"". UCLA Law Review. Retrieved 12 March 2022.
  24. Lindstedt, Catharina; Naurin, Daniel (June 2010). "Transparency is not Enough: Making Transparency Effective in Reducing Corruption". International Political Science Review. 31 (3): 301–322. doi:10.1177/0192512110377602. ISSN   0192-5121. S2CID   154948461.
  25. uclalaw (2 May 2013). "The Uncertain Relationship Between Open Data and Accountability: A Response to Yu and Robinson's The New Ambiguity of "Open Government"". UCLA Law Review. Retrieved 12 March 2022.
  26. "The Economic Impact of Open Data: Opportunities for value creation in Europe". data.europa.eu. Retrieved 12 March 2022.
  27. "California Open Data Portal". data.ca.gov. Retrieved 7 May 2019.
  28. "NYC Open Data". City of New York. Retrieved 7 May 2019.
  29. "UNdata". data.un.org. Retrieved 7 May 2019.
  30. "World Bank Open Data | Data". data.worldbank.org. Retrieved 7 May 2019.
  31. "Data.europa.eu" . Retrieved 7 May 2019.
  32. "Home | Open Data Portal". data.europa.eu. Retrieved 7 May 2019.
  33. "Open Data Management Cycle" (in Italian).
  34. "Linee guida per l'ecosistema regionale veneto dei dati aperti (Open Data)" (in Italian).
  35. "Modello Operativo Open Data (MOOD) Umbria" (in Italian).
  36. "Linee guida programmatiche della Città Metropolitana di Genova" (PDF) (in Italian).
  37. "The Open Data Charter: A Roadmap for Using a Global Resource". The Huffington Post. 27 October 2015. Retrieved 29 October 2015.
  38. OECD (4 July 2024). "OECD data, publications and analysis become freely accessible — Press release". Organisation for Economic Co-operation and Development (OECD). Paris, France. Retrieved 10 July 2024.
  39. Green, Arthur C. (17 September 2019). "OpenNWT announces launch of new election information website". My Yellowknife Now.
  40. Oyuela, Andrea; Walmsley, Thea; Walla, Katherine (30 December 2019). "120 Organizations Creating a New Decade for Food". Food Tank. Retrieved 21 January 2020.
  41. "dblp: How can I download the whole dblp dataset?". dblp.uni-trier.de. Dagstuhl. Retrieved 21 January 2020.
  42. Victor, Patricia; Cornelis, Chris; De Cock, Martine; Herrera-Viedma, Enrique (2010). "Bilattice-based aggregation operators for gradual trust and distrust". World Scientific Proceedings Series on Computer Engineering and Information Science. World Scientific: 505–510. doi:10.1142/9789814324700_0075. ISBN   978-981-4324-69-4. S2CID   5748283.
  43. Dandekar, Pranav. Analysis & Generative Model for Trust Networks (PDF). Stanford Network Analysis Project (Report). Stanford University.
  44. Overgoor, Jan; Wulczyn, Ellery; Potts, Christopher (20 May 2012). "Trust Propagation with Mixed-Effects Models". Sixth International AAAI Conference on Weblogs and Social Media.
  45. Lauterbach, Debra; Truong, Hung; Shah, Tanuj; Adamic, Lada (August 2009). "Surfing a Web of Trust: Reputation and Reciprocity on CouchSurfing.com". 2009 International Conference on Computational Science and Engineering. Vol. 4. pp. 346–353. doi:10.1109/CSE.2009.345. ISBN   978-1-4244-5334-4. S2CID   12869279.
  46. Tagiew, Rustam; Ignatov, Dmitry. I; Delhibabu, Radhakrishnan (2015). "Hospitality Exchange Services as a Source of Spatial and Social Data?". 2015 IEEE International Conference on Data Mining Workshop (ICDMW). IEEE. pp. 1125–1130. doi:10.1109/ICDMW.2015.239. ISBN   978-1-4673-8493-3. S2CID   8196598.
  47. 1 2 National Science Foundation (September 2005). "Long-Lived Digital Data Collections: Enabling Research and Education in the 21st Century" (PDF). National Science Foundation. p. 23. Retrieved 4 January 2022.
  48. 1 2 3 Grossman, Robert L.; Heath, Allison; Murphy, Mark; Patterson, Maria; Wells, Walt (2016). "A Case for Data Commons: Toward Data Science as a Service". Computing in Science & Engineering. 18 (5): 10–20. arXiv: 1604.02608 . Bibcode:2016CSE....18e..10G. doi:10.1109/MCSE.2016.92. ISSN   1521-9615. PMC   5636009 . PMID   29033693.
  49. 1 2 Grossman, R.L. (23 April 2019). "How Data Commons Can Support Open Science". SageBionetworks. Retrieved 4 January 2022.
  50. BMI (7 July 2021). Open-Data-Strategie der Bundesregierung — BMI21030 [Open data strategy of the German Federal Government — BMI21030](PDF) (in German). Berlin, Germany: Bundesministerium des Innern, für Bau und Heimat (BMI). Retrieved 26 July 2021.
  51. "On the road to open data, by Ian Manocha". Archived from the original on 29 March 2012. Retrieved 12 August 2011.
  52. "Big Data for Development: From Information- to Knowledge Societies", Martin Hilbert (2013), SSRN Scholarly Paper No. ID 2205145. Rochester, NY: Social Science Research Network; https://ssrn.com/abstract=2205145
  53. How to Make the Dream Come True [ permanent dead link ] argues in one research area (Astronomy) that access to open data increases the rate of scientific discovery.
  54. Khodiyar, Varsha (19 May 2014). "Stopping the rot: ensuring continued access to scientific data, irrespective of age". F1000 Research. F1000. Retrieved 11 March 2015.
  55. Magee AF, May MR, Moore BR (24 October 2014). "The dawn of open access to phylogenetic data". PLOS ONE. 9 (10): e110268. arXiv: 1405.6623 . Bibcode:2014PLoSO...9k0268M. doi: 10.1371/journal.pone.0110268 . PMC   4208793 . PMID   25343725.
  56. Rivera, Roberto; Marazzi, Mario; Torres, Pedro (19 June 2019). "Incorporating Open Data Into Introductory Courses in Statistics". Journal of Statistics Education. 27 (3). Taylor and Francis: 198–207. arXiv: 1906.03762 . doi:10.1080/10691898.2019.1669506. S2CID   182952595 . Retrieved 7 May 2020.
  57. Rivera, Roberto (5 February 2020). Principles of Managerial Statistics and Data Science. Wiley. ISBN   978-1119486411.
  58. Gewin, V. (2016). "Data sharing: An open mind on open data". Nature. pp. 117–119. doi:10.1038/NJ7584-117A . Retrieved 31 January 2024.
  59. Towards a Science Commons Archived 14 July 2014 at the Wayback Machine includes an overview of the basis of openness in science data.
  60. Low, A. (2001). The Third Revolution: Plant Genetic Resources in Developing Countries and China: Global Village or Global Pillage?. International Trade & Business Law Annual Vol VI. ISBN   9781843140870 . Retrieved 31 January 2024.
  61. Zuiderwijk, Anneke; Janssen, Marijn (18 June 2014). "The negative effects of open government data - investigating the dark side of open data". Proceedings of the 15th Annual International Conference on Digital Government Research. dg.o '14. New York, NY, USA: Association for Computing Machinery. pp. 147–152. doi:10.1145/2612733.2612761. ISBN   978-1-4503-2901-9. S2CID   14440894.
  62. Sharif, Naubahar; Ritter, Waltraut; Davidson, Robert L; Edmunds, Scott C (31 December 2018). "An Open Science 'State of the Art' for Hong Kong: Making Open Research Data Available to Support Hong Kong Innovation Policy". Journal of Contemporary Eastern Asia. 17 (2): 200–221. doi:10.17477/JCEA.2018.17.2.200.
  63. Kleisarchaki, Sofia; Gürgen, Levent; Mitike Kassa, Yonas; Krystek, Marcin; González Vidal, Daniel (12 June 2022). "Optimization of Soft Mobility Localization with Sustainable Policies and Open Data". 2022 18th International Conference on Intelligent Environments (IE). pp. 1–8. doi:10.1109/IE54923.2022.9826779. ISBN   978-1-6654-6934-0. S2CID   250595935.
  64. "Protocol for Implementing Open Access Data". Archived from the original on 30 January 2017. Retrieved 17 April 2009.
  65. Kauppinen, T.; Espindola, G. M. D. (2011). "Linked Open Science-Communicating, Sharing and Evaluating Data, Methods and Results for Executable Papers". Procedia Computer Science. 4: 726–731. doi: 10.1016/j.procs.2011.04.076 .
  66. "Open GLAM". Wikimedia Meta-Wiki.
  67. Henriette Roued (2020). Open Heritage Data: An introduction to research, publishing and programming with open data in the heritage sector. Facet Publishing. ISBN   978-1-78330-360-1. OL   29397859M. Wikidata   Q111293389.
  68. 1 2 3 Dulong de Rosnay, Mélanie; Stalder, Felix (17 December 2020). "Digital commons". Internet Policy Review. 9 (4). doi: 10.14763/2020.4.1530 . ISSN   2197-6775. S2CID   240800967.
  69. 1 2 3 4 van Loenen, Bastiaan; Vancauwenberghe, Glenn; Crompvoets, Joep; Dalla Corte, Lorenzo (2018). Open Data Exposed. Information Technology and Law Series. Vol. 30. T.M.C. Asser Press. pp. 1–10. doi:10.1007/978-94-6265-261-3_1. eISSN   2215-1966. ISBN   978-94-6265-260-6. ISSN   1570-2782.
  70. Kleisarchaki, Sofia; Gürgen, Levent; Mitike Kassa, Yonas; Krystek, Marcin; González Vidal, Daniel (1 June 2022). "Optimization of Soft Mobility Localization with Sustainable Policies and Open Data". 2022 18th International Conference on Intelligent Environments (IE). pp. 1–8. doi:10.1109/IE54923.2022.9826779. ISBN   978-1-6654-6934-0. S2CID   250595935.
  71. "SPARC-OpenData@arl.org Mailing List Archive". Archived from the original on 16 July 2011. Retrieved 2 November 2006.
  72. Galsworthy, M.; McKee, M. (2013). "Galsworthy, M.J. & McKee, M. (2013). Europe's "Horizon 2020" science funding programme: How is it shaping up? Journal of Health Services Research and Policy. doi: 10.1177/1355819613476017". Journal of Health Services Research & Policy. 18 (3): 182–185. doi:10.1177/1355819613476017. PMC   4107840 . PMID   23595575. Archived from the original on 23 April 2013. Retrieved 24 April 2013.