Automotive aerodynamics

Last updated

Automotive aerodynamics is the study of the aerodynamics of road vehicles. Its main goals are reducing drag and wind noise, minimizing noise emission, and preventing undesired lift forces and other causes of aerodynamic instability at high speeds. Air is also considered a fluid in this case. For some classes of racing vehicles, it may also be important to produce downforce to improve traction and thus cornering abilities.

Contents

History

Edmund Rumpler's 1921 Tropfenwagen was the first series-produced aerodynamically designed automobile, before the Chrysler Airflow and the Tatra 77. Rumpler Tropfenwagen.jpg
Edmund Rumpler's 1921 Tropfenwagen was the first series-produced aerodynamically designed automobile, before the Chrysler Airflow and the Tatra 77.

The frictional force of aerodynamic drag increases significantly with vehicle speed. [1] As early as the 1920s engineers began to consider automobile shape in reducing aerodynamic drag at higher speeds. By the 1950s German and British automotive engineers were systematically analyzing the effects of automotive drag for the higher performance vehicles. [2] By the late 1960s scientists also became aware of the significant increase in sound levels emitted by automobiles at high speed. These effects were understood to increase the intensity of sound levels for adjacent land uses at a non-linear rate. [3] Soon highway engineers began to design roadways to consider the speed effects of aerodynamic drag produced sound levels, and automobile manufacturers considered the same factors in vehicle design.

Strategies for reducing drag

Streaklines over a model car Aerodynamics of model car.jpg
Streaklines over a model car

The deletion of parts on a vehicle is an easy way for designers and vehicle owners to reduce parasitic and frontal drag of the vehicle with little cost and effort. Deletion can be as simple as removing an aftermarket part, or part that has been installed on the vehicle after production, or having to modify and remove an OEM part, meaning any part of the vehicle that was originally manufactured on the vehicle. Most production sports cars and high efficiency vehicles come standard with many of these deletions in order to be competitive in the automotive and race market, while others choose to keep these drag-increasing aspects of the vehicle for their visual aspects, or to fit the typical uses of their customer base. [4]

Spoilers

A rear spoiler usually comes standard in most sports vehicles and resembles the shape of a raised wing in the rear of the vehicle. The main purpose of a rear spoiler in a vehicle's design is to counteract lift, thereby increasing stability at higher speeds. In order to achieve the lowest possible drag, air must flow around the streamlined body of the vehicle without coming into contact with any areas of possible turbulence. A rear spoiler design that stands off the rear deck lid will increase downforce, reducing lift at high speeds while incurring a drag penalty. Flat spoilers, possibly angled slightly downward may reduce turbulence and thereby reduce the coefficient of drag. [5] Some cars now feature automatically adjustable rear spoilers, so at lower speed the effect on drag is reduced when the benefits of reduced lift are not required.

Mirrors

Side mirrors both increase the frontal area of the vehicle and increase the coefficient of drag since they protrude from the side of the vehicle. [6] [7] In order to decrease the impact that side mirrors have on the drag of the vehicle the side mirrors can be replaced with smaller mirrors or mirrors with a different shape. Several concept cars of the 2010s are replacing mirrors with tiny cameras [8] but this option is not common for production cars because most countries require side mirrors. One of the first production passenger automobiles to swap out mirrors for cameras was the Honda e, and in this case the cameras are claimed by Honda to have decreased aerodynamic drag by "around 90% compared to conventional door mirrors" which contributed to an approximately 3.8% reduction in drag for the entire vehicle. [9] It is estimated that two side mirrors are responsible for 2 to 7% of the total aerodynamic drag of a motor vehicle, and that removing them could improve fuel economy by 1.5–2 miles per US gallon. [10]

Radio antennas

While they do not have the biggest impact on the drag coefficient due to their small size, radio antennas commonly found protruding from the front of the vehicle can be relocated and changed in design to rid the car of this added drag. The most common replacement for the standard car antenna is the shark fin antenna found in most high efficiency vehicles. [11]

Wheels

Alloy wheels with covers on a Tesla Model 3 Tesla Model 3 aero wheels.jpg
Alloy wheels with covers on a Tesla Model 3

When air flows around the wheel wells it gets disturbed by the rims of the vehicles and forms an area of turbulence around the wheel. In order for the air to flow more smoothly around the wheel well, smooth wheel covers are often applied. Smooth wheel covers are hub caps with no holes in them for air to pass through. This design reduces drag; however, it may cause the brakes to heat up more quickly because the covers prevent airflow around the brake system. As a result, this modification is more commonly seen in high efficiency vehicles rather than sports cars or racing vehicles. [12]

Air curtains

2017 Land Rover Discovery with front air curtains 2017 Land Rover Discovery HSE TD6 Automatic 3.0 Front.jpg
2017 Land Rover Discovery with front air curtains

Air curtains divert air flow from slots in the body and guide it towards the outside edges of the wheel wells. [13] [14] [15]

Partial grille blocks

The front grille of a vehicle is used to direct air through the radiator. In a streamlined design the air flows around the vehicle rather than through; however, the grille of a vehicle redirects airflow from around the vehicle to through the vehicle, which then increases the drag. In order to reduce this impact a grille block is often used. A grille block covers up a portion of, or the entirety of, the front grille of a vehicle. In most high efficiency models or in vehicles with low drag coefficients, a very small grille will already be built into the vehicle's design, eliminating the need for a grille block. The grille in most production vehicles is generally designed to maximize air flow through the radiator where it exits into the engine compartment. This design can actually create too much airflow into the engine compartment, preventing it from warming up in a timely manner, and in such cases a grille block is used to increase engine performance and reduce vehicle drag simultaneously. [16] [ page needed ]

Under trays

The underside of a vehicle often traps air in various places and adds turbulence around the vehicle. In most racing vehicles this is eliminated by covering the entire underside of the vehicle in what is called an under tray. This tray prevents any air from becoming trapped under the vehicle and reduces drag. [12]

A truck with added bodywork on top of the cab to reduce drag. Truck aerodynamics.jpg
A truck with added bodywork on top of the cab to reduce drag.

Fender skirts

Fender skirts are often made as extensions of the body panels of the vehicles and cover the entire wheel wells. Much like smooth wheel covers this modification reduces the drag of the vehicle by preventing any air from becoming trapped in the wheel well and assists in streamlining the body of the vehicle. Fender skirts are more commonly found on the rear wheel wells of a vehicle because the tires do not turn and the design is much simpler. This is commonly seen in vehicles such as the first generation Honda Insight. Front fender skirts have the same effect on reducing drag as the rear wheel skirts, but must be further offset from the body in order to compensate for the tire sticking out from the body of the vehicle as turns are made. [12]

Boattails and Kammbacks

A boattail can greatly reduce a vehicle's total drag. Boattails create a teardrop shape that will give the vehicle a more streamlined profile, reducing the occurrence of drag inducing flow separation. [17] A kammback is a truncated boattail. It is created as an extension of the rear of the vehicle, moving the rear backward at a slight angle toward the bumper of the car. This can reduce drag as well but a boattail would reduce the vehicle's drag more. Nonetheless, for practical and style reasons, a kammback is more commonly seen in racing, high efficiency vehicles, and trucking. [18]

Comparison with aircraft aerodynamics

Automotive aerodynamics differs from aircraft aerodynamics in several ways:

Methods of studying aerodynamics

One of the side effects of automotive aerodynamics is seed dispersal.

Automotive aerodynamics is studied using both computer modelling and wind tunnel testing. For the most accurate results from a wind tunnel test, the tunnel is sometimes equipped with a rolling road. This is a movable floor for the working section, which moves at the same speed as the air flow. This prevents a boundary layer from forming on the floor of the working section and affecting the results.

Downforce

Downforce describes the downward pressure created by the aerodynamic characteristics of a car that allows it to travel faster through a corner by holding the car to the track or road surface. Some elements to increase vehicle downforce will also increase drag. It is very important to produce a good downward aerodynamic force because it affects the car's speed and traction. [19]

See also

Related Research Articles

<span class="mw-page-title-main">Aerodynamics</span> Branch of dynamics concerned with studying the motion of air

Aerodynamics is the study of the motion of air, particularly when affected by a solid object, such as an airplane wing. It involves topics covered in the field of fluid dynamics and its subfield of gas dynamics, and is an important domain of study in aeronautics. The term aerodynamics is often used synonymously with gas dynamics, the difference being that "gas dynamics" applies to the study of the motion of all gases, and is not limited to air. The formal study of aerodynamics began in the modern sense in the eighteenth century, although observations of fundamental concepts such as aerodynamic drag were recorded much earlier. Most of the early efforts in aerodynamics were directed toward achieving heavier-than-air flight, which was first demonstrated by Otto Lilienthal in 1891. Since then, the use of aerodynamics through mathematical analysis, empirical approximations, wind tunnel experimentation, and computer simulations has formed a rational basis for the development of heavier-than-air flight and a number of other technologies. Recent work in aerodynamics has focused on issues related to compressible flow, turbulence, and boundary layers and has become increasingly computational in nature.

<span class="mw-page-title-main">Open-wheel car</span> Type of automobile

An open-wheel car is a car with the wheels outside the car's main body, and usually having only one seat. Open-wheel cars contrast with street cars, sports cars, stock cars, and touring cars, which have their wheels below the body or inside fenders. Open-wheel cars are built both for road racing and oval track racing. Open-wheel cars licensed for use on public roads, such as the Ariel Atom, are uncommon, as they are often impractical for everyday use.

<span class="mw-page-title-main">Velomobile</span> Human-powered vehicle

A velomobile ; velomobiel, velo, or bicycle car is a human-powered vehicle (HPV) enclosed for aerodynamic advantage and/or protection from weather and collisions. Velomobiles are similar to recumbent bicycles, pedal go-karts and tricycles, but with a full fairing and are not to be confused with purpose-built mobiles for racing or speed records fully faired vehicles with two wheels, generally called streamliners. Streamliners have set many speed and distance records.

<span class="mw-page-title-main">McLaren F1</span> British sports car designed and manufactured by McLaren Automotive

The McLaren F1 is a sports car designed and manufactured by British automobile manufacturer McLaren Cars and powered by the BMW S70/2 V12 engine. The original concept was conceived by Gordon Murray, who successfully convinced Ron Dennis to back the project and hired car designer Peter Stevens to design the exterior and interior of the car. On 31 March 1998, the XP5 prototype with a modified rev limiter set the Guinness World Record for the world's fastest production car, reaching 240.1 mph (386.4 km/h), surpassing the modified Jaguar XJ220's 217.1 mph (349 km/h) record from 1993.

<span class="mw-page-title-main">Downforce</span> Downwards lift force created by the aerodynamic characteristics of a vehicle

Downforce is a downwards lift force created by the aerodynamic features of a vehicle. If the vehicle is a car, the purpose of downforce is to allow the car to travel faster by increasing the vertical force on the tires, thus creating more grip. If the vehicle is a fixed-wing aircraft, the purpose of the downforce on the horizontal stabilizer is to maintain longitudinal stability and allow the pilot to control the aircraft in pitch.

A Formula One car or F1 car is a single-seat, open-cockpit, open-wheel formula racing car with substantial front and rear wings, and an engine positioned behind the driver, intended to be used in competition at Formula One racing events. The regulations governing the cars are unique to the championship and specify that cars must be constructed by the racing teams themselves, though the design and manufacture can be outsourced. Due to the amount of braking force and the total cornering envelope of a Formula One car, Formula One drivers experience frequent lateral g-loadings in excess of five g and peak cornering forces of up to seven lateral g.

<span class="mw-page-title-main">Kammback</span> Automotive styling feature

A Kammback—also known as a Kamm tail or K-tail—is an automotive styling feature wherein the rear of the car slopes downwards before being abruptly cut off with a vertical or near-vertical surface. A Kammback reduces aerodynamic drag, thus improving efficiency and reducing fuel consumption, while maintaining a practical shape for a vehicle.

<span class="mw-page-title-main">Spoiler (car)</span> Device for reducing aerodynamic drag

A spoiler is an automotive aerodynamic device whose intended design function is to 'spoil' unfavorable air movement across the body of a vehicle in motion, usually described as turbulence or drag. Spoilers on the front of a vehicle are often called air dams. Spoilers are often fitted to race and high-performance sports cars, although they have become common on passenger vehicles as well. Spoilers are added to cars primarily for styling purposes and either have little aerodynamic benefit or even worsen the aerodynamics.

<span class="mw-page-title-main">Mercedes-Benz W125 Rekordwagen</span> Late 1930s experimental high-speed automobile

The Mercedes-Benz W125 Rekordwagen was an experimental, high-speed automobile produced in the late 1930s. The streamlined car was derived from the 1937

<span class="mw-page-title-main">Gurney flap</span> Tab on a wing, used to stabilise racecars, helicopters etc.

The Gurney flap is a small tab projecting from the trailing edge of a wing. Typically it is set at a right angle to the pressure-side surface of the airfoil and projects 1% to 2% of the wing chord. This trailing edge device can improve the performance of a simple airfoil to nearly the same level as a complex high-performance design.

<span class="mw-page-title-main">Tatra 77</span> Motor vehicle

The Czechoslovakian Tatra 77 (T77) is one of the first serial-produced, truly aerodynamically-designed automobiles. It was developed by Hans Ledwinka and Paul Jaray, the Zeppelin aerodynamic engineer. Launched in 1934, the Tatra 77 is a coach-built automobile, constructed on a platform chassis with a pressed box-section steel backbone rather than Tatra's trademark tubular chassis, and is powered by a 60 horsepower (45 kW) rear-mounted 2.97-litre air-cooled V8 engine, in later series increased to a 75 horsepower (56 kW) 3.4-litre engine. It possessed advanced engineering features, such as overhead valves, hemispherical combustion chambers, a dry sump, fully independent suspension, rear swing axles and extensive use of lightweight magnesium alloy for the engine, transmission, suspension and body. The average drag coefficient of a 1:5 model of Tatra 77 was recorded as 0.2455. The later model T77a has a top speed of over 150 km/h (93 mph) due to its advanced aerodynamic design which delivers an exceptionally low drag coefficient of 0.212, although some sources claim that this is the coefficient of a 1:5 scale model, not of the car itself. Recent article confirmed the Tatra 77/77a drag coefficient for real full-size car as 0.36.

Wunibald Kamm was an automobile designer, engineer, and aerodynamicist. He is best known for his breakthrough in reducing car turbulence at high speeds; the style of car bodywork based on his research has come to be known as a Kammback or a Kamm-tail.

<span class="mw-page-title-main">Diffuser (automotive)</span> Aerodynamic surface

A diffuser, in an automotive context, is a shaped section of the car rear which improves the car's aerodynamic properties by enhancing the transition between the high-velocity airflow underneath the car and the much slower freestream airflow of the ambient atmosphere. It works by providing a space for the underbody airflow to decelerate and expand so that it does not cause excessive flow separation and drag, by providing a degree of "wake infill" or more accurately, pressure recovery. The diffuser itself accelerates the flow in front of it, which helps generate downforce. This is achieved by creating a change in velocity of the air flowing under the diffuser by giving it a rake angle which in turn generates a change in pressure and hence increases downforce.

In car design, ground effect is a series of effects which have been exploited in automotive aerodynamics to create downforce, particularly in racing cars. This has been the successor to the earlier dominant aerodynamic focus on streamlining. The international Formula One series and American racing IndyCars employ ground effects in their engineering and designs. Similarly, they are also employed in other racing series to some extent; however, across Europe, many series employ regulations to limit its effectiveness on safety grounds.

<span class="mw-page-title-main">Nissan GT-R</span> Sports car manufactured by Japanese automobile manufacturer Nissan

The Nissan GT-R is a car built by Japanese marque Nissan since 2007. It has a 2+2 seating layout and is considered both a sports car and a grand tourer. The engine is front-mid mounted and drives all four wheels. It succeeds the Nissan Skyline GT-R, a faster variant of the Nissan Skyline. Although this model was the sixth-generation to bear the GT-R name, it is no longer part of the Skyline line-up. The car is built on the PM platform, derived from the FM platform used in the Skyline and Nissan Z models. Production is conducted in a shared production line at Nissan's Tochigi plant in Japan.

<span class="mw-page-title-main">Automobile drag coefficient</span> Resistance of a car to moving through air

The drag coefficient is a common measure in automotive design as it pertains to aerodynamics. Drag is a force that acts parallel to and in the same direction as the airflow. The drag coefficient of an automobile measures the way the automobile passes through the surrounding air. When automobile companies design a new vehicle they take into consideration the automobile drag coefficient in addition to the other performance characteristics. Aerodynamic drag increases with the square of speed; therefore it becomes critically important at higher speeds. Reducing the drag coefficient in an automobile improves the performance of the vehicle as it pertains to speed and fuel efficiency. There are many different ways to reduce the drag of a vehicle. A common way to measure the drag of the vehicle is through the drag area.

<span class="mw-page-title-main">Mercedes-Benz C112</span> Mid-engine concept car developed by German automobile manufacturer Mercedes Benz in 1991

The Mercedes-Benz C112 was an experimental mid-engine concept car built in 1991 by German automobile manufacturer Mercedes-Benz as a test bed, similar to the later versions of the C111. Despite using the same chassis code, it was not related to the W112 series of limousines and coupes of the 1960s. The C112 was intended to be the road-legal counterpart of the Sauber-built C11 Group C prototype race car developed for the 1990 World Sports-Prototype Championship.

<span class="mw-page-title-main">Nolder</span> Small aerodynamic shape on an automotive

In automotive design, a nolder is a small aerodynamic shape integral to bodywork or to an aerodynamic attachment – e.g., a spoiler, diffuser or splitter – perpendicular to the direction of air flow travel for the purpose of further managing and refining air flow.

Pull-rod suspension and push-rod suspension refer to a specialised type of automotive suspension system which is largely based on a double-wishbone system, incorporating elements of the commonly used MacPherson strut.

<span class="mw-page-title-main">Gordon Murray Automotive T.50</span> Sports car

The GMA T.50 or Gordon Murray Automotive Type 50 is a sports car manufactured by Gordon Murray Automotive. Designed by Gordon Murray and inspired by the McLaren F1, the T.50 is powered by an all-new bespoke 3,994 cc (4.0 L) naturally aspirated V12 engine developed by Cosworth. The engine is rated at 663 PS at 11,500 rpm with a maximum torque of 467 N⋅m (344 lbf⋅ft) at 9,000 rpm.

References

  1. Tuncer Cebeci, Jian P. Shao, Fassi Kafyeke, Eric Laurendeau, Computational Fluid Dynamics for Engineers: From Panel to Navier-Stokes, Springer, 2005, ISBN   3-540-24451-4
  2. Proceedings: Institution of Mechanical Engineers (Great Britain). Automobile Division: Institution of Mechanical Engineers, Great Britain (1957)
  3. C. Michael Hogan & Gary L. Latshaw, The relationship between highway planning and urban noise, Proceedings of the ASCE, Urban Transportation Division specialty conference, May 21/23, 1973, Chicago, Illinois. by American Society of Civil Engineers. Urban Transportation Division
  4. Davis, Marlan (February 2009). "Aerodynamic Tips and Tricks You Can Use for Better Performance". Hot Rod Magazine. US. Archived from the original on 2012-04-22.
  5. Physics for Scientists and Engineers , p. 448, at Google Books
  6. "Reflections on side mirrors: testing drag vs. MPG". MetroMPG.com. 2006-08-31. Retrieved 2018-12-07.
  7. The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains, Volume 1 , p. 490, at Google Books
  8. "First drive review: Porsche Panamera Sport Turismo". Autocar. 2012-12-07. Retrieved 2013-03-01.
  9. Fossdyke, James. "Honda E To Get Side Camera Mirror System As Standard". Motor1. Retrieved 7 May 2021.
  10. Brooke, Lindsay. "A mirrorless future? NHTSA seeks input on exterior cameras". SAE News. SAE International. Retrieved 7 May 2021.
  11. "Estimation of The Drag of a Roof Mounted Antenna (AU Ford Falcon)". Virtual V8. Australia. September 2005. Retrieved 2019-03-03.
  12. 1 2 3 Ali, Hussain. "Drag Reduction on a Production Vehicle" (PDF). UK: Coventry University.[ dead link ]
  13. Bridger, Gabriel (2010-12-13). "The 1M's Air Curtain in Detail". BimmerFile. Retrieved 2018-02-10.
  14. "How Air Curtains on F-150 Help Reduce Aerodynamic Drag and Aid Fuel Efficiency" (Press release). 2015-07-15. Retrieved 2018-02-10.
  15. "Designing for design's sake—with aerodynamics built in" (Press release). Honda. Archived from the original on 2018-02-20. Retrieved 2018-02-20.
  16. Korff, Walter Henry (1980). Designing tomorrow's cars: from concept, step-by-step, to detail design. M-C Publications. ISBN   9780960385003.
  17. Popular Mechanics Sep 1981 , p. 158, at Google Books
  18. Lögdberg, Ola (2008). "Turbulent Boundary Layer Separation and Control". Stockholm: KTH Royal Institute of Technology. Retrieved 2019-03-03.
  19. "Background Research." Automobile Aerodynamics. 18 May 2008. DHS. 18 May 2009 <http://web-aerodynamics.webs.com/backgroundresearch.htm> Archived September 2, 2011, at the Wayback Machine .