Punnett square

Last updated

A Punnett square showing a typical test cross. (green pod color is dominant over yellow for pea pods in contrast to pea seeds, where yellow cotyledon color is dominant over green ). Punnett Square (Green Dominant).svg
A Punnett square showing a typical test cross. (green pod color is dominant over yellow for pea pods in contrast to pea seeds, where yellow cotyledon color is dominant over green ).
Punnett squares for each combination of parents' colour vision status giving probabilities of their offsprings' status, each cell having 25% probability in theory. Punnett square colour blindness.svg
Punnett squares for each combination of parents' colour vision status giving probabilities of their offsprings' status, each cell having 25% probability in theory.

The Punnett square is a square diagram that is used to predict the genotypes of a particular cross or breeding experiment. It is named after Reginald C. Punnett, who devised the approach in 1905. [3] [4] [5] [6] [7] [8] The diagram is used by biologists to determine the probability of an offspring having a particular genotype. The Punnett square is a tabular summary of possible combinations of maternal alleles with paternal alleles. [9] These tables can be used to examine the genotypical outcome probabilities of the offspring of a single trait (allele), or when crossing multiple traits from the parents. The Punnett square is a visual representation of Mendelian inheritance, a fundamental concept in genetics which is discovery of Gregor Mendel. [10] For multiple traits, using the "forked-line method" is typically much easier than the Punnett square. Phenotypes may be predicted with at least better-than-chance accuracy using a Punnett square, but the phenotype that may appear in the presence of a given genotype can in some instances be influenced by many other factors, as when polygenic inheritance and/or epigenetics are at work.

Contents

Zygosity

Zygosity refers to the grade of similarity between the alleles that determine one specific trait in an organism. In its simplest form, a pair of alleles can be either homozygous or heterozygous. Homozygosity, with homo relating to same while zygous pertains to a zygote, is seen when a combination of either two dominant or two recessive alleles code for the same trait. Recessive are always lowercase letters. For example, using 'A' as the representative character for each allele, a homozygous dominant pair's genotype would be depicted as 'AA', while homozygous recessive is shown as 'aa'. Heterozygosity, with hetero associated with different, can only be 'Aa' (the capital letter is always presented first by convention). The phenotype of a homozygous dominant pair is 'A', or dominant, while the opposite is true for homozygous recessive. Heterozygous pairs always have a dominant phenotype. [11] To a lesser degree, hemizygosity [12] and nullizygosity [13] can also be seen in gene pairs.

Monohybrid cross

"Mono-" means "one"; this cross indicates that the examination of a single trait. This could mean (for example) eye color. Each genetic locus is always represented by two letters. So in the case of eye color, say "B = Brown eyes" and "b = green eyes". In this example, both parents have the genotype Bb. For the example of eye color, this would mean they both have brown eyes. They can produce gametes that contain either the B or the b allele. (It is conventional in genetics to use capital letters to indicate dominant alleles and lower-case letters to indicate recessive alleles.) The probability of an individual offspring's having the genotype BB is 25%, Bb is 50%, and bb is 25%. The ratio of the phenotypes is 3:1, typical for a monohybrid cross. When assessing phenotype from this, "3" of the offspring have "Brown" eyes and only one offspring has "green" eyes. (3 are "B?" and 1 is "bb")

Paternal

Maternal
Bb
BXbY
bXBXb

The way in which the B and b alleles interact with each other to affect the appearance of the offspring depends on how the gene products (proteins) interact (see Mendelian inheritance). This can include lethal effects and epistasis (where one allele masks another, regardless of dominant or recessive status).

Dihybrid cross

More complicated crosses can be made by looking at two or more genes. The Punnett square works, however, only if the genes are independent of each other, which means that having a particular allele of gene "A" does not alter the probability of possessing an allele of gene "B". This is equivalent to stating that the genes are not linked, so that the two genes do not tend to sort together during meiosis.

The following example illustrates a dihybrid cross between two double-heterozygote pea plants. R represents the dominant allele for shape (round), while r represents the recessive allele (wrinkled). A represents the dominant allele for color (yellow), while a represents the recessive allele (green). If each plant has the genotype RrAa, and since the alleles for shape and color genes are independent, then they can produce four types of gametes with all possible combinations: RA, Ra, rA, and ra.

RARarAra
RARRAARRAaRrAARrAa
RaRRAaRRaaRrAaRraa
rARrAARrAarrAArrAa
raRrAaRraarrAarraa

Since dominant traits mask recessive traits (assuming no epistasis), there are nine combinations that have the phenotype round yellow, three that are round green, three that are wrinkled yellow, and one that is wrinkled green. The ratio 9:3:3:1 is the expected outcome when crossing two double-heterozygous parents with unlinked genes. Any other ratio indicates that something else has occurred (such as lethal alleles, epistasis, linked genes, etc.).

Forked-line method

The forked-line method (also known as the tree method and the branching system) can also solve dihybrid and multi-hybrid crosses. A problem is converted to a series of monohybrid crosses, and the results are combined in a tree. However, a tree produces the same result as a Punnett square in less time and with more clarity. The example below assesses another double-heterozygote cross using RrYy x RrYy. As stated above, the phenotypic ratio is expected to be 9:3:3:1 if crossing unlinked genes from two double-heterozygotes. The genotypic ratio was obtained in the diagram below, this diagram will have more branches than if only analyzing for phenotypic ratio.

Dihybrid Cross Tree Method.png

Homozygous cross tree method.png

There are also Punnett squares for epistasis. In these cases the genotype epistatic over the other genes hinders their expression in the phenotype. Epistasis.png
There are also Punnett squares for epistasis. In these cases the genotype epistatic over the other genes hinders their expression in the phenotype.

See also

Related Research Articles

An allele, or allelomorph, is a variant of the sequence of nucleotides at a particular location, or locus, on a DNA molecule.

The genotype of an organism is its complete set of genetic material. Genotype can also be used to refer to the alleles or variants an individual carries in a particular gene or genetic location. The number of alleles an individual can have in a specific gene depends on the number of copies of each chromosome found in that species, also referred to as ploidy. In diploid species like humans, two full sets of chromosomes are present, meaning each individual has two alleles for any given gene. If both alleles are the same, the genotype is referred to as homozygous. If the alleles are different, the genotype is referred to as heterozygous.

<span class="mw-page-title-main">Mendelian inheritance</span> Type of biological inheritance

Mendelian inheritance is a type of biological inheritance following the principles originally proposed by Gregor Mendel in 1865 and 1866, re-discovered in 1900 by Hugo de Vries and Carl Correns, and later popularized by William Bateson. These principles were initially controversial. When Mendel's theories were integrated with the Boveri–Sutton chromosome theory of inheritance by Thomas Hunt Morgan in 1915, they became the core of classical genetics. Ronald Fisher combined these ideas with the theory of natural selection in his 1930 book The Genetical Theory of Natural Selection, putting evolution onto a mathematical footing and forming the basis for population genetics within the modern evolutionary synthesis.

<span class="mw-page-title-main">Dominance (genetics)</span> One gene variant masking the effect of another in the other copy of the gene

In genetics, dominance is defined as the interactions between alleles at the same locus on homologous chromosomes and the associated phenotype. In the case of complete dominance, one allele in a heterozygote individual completely overrides or masks the phenotypic contribution of the other allele. The overriding allele is referred to as dominant and the masked one recessive. Complete dominance, also referred to as Mendelian inheritance, follow Mendel's laws of segregation. The first law states that each allele in a pair of genes is separated at random and have an equal probability of being transferred to the next generation, while the second law states that the distribution of allele variants is done independently of each other. However, this is not always the case as not all genes segregate independently and violations of this law are often referred to as "non-Mendelian inheritance".

<span class="mw-page-title-main">Hardy–Weinberg principle</span> Principle in genetics

In population genetics, the Hardy–Weinberg principle, also known as the Hardy–Weinberg equilibrium, model, theorem, or law, states that allele and genotype frequencies in a population will remain constant from generation to generation in the absence of other evolutionary influences. These influences include genetic drift, mate choice, assortative mating, natural selection, sexual selection, mutation, gene flow, meiotic drive, genetic hitchhiking, population bottleneck, founder effect,inbreeding and outbreeding depression.

Genetic linkage is the tendency of DNA sequences that are close together on a chromosome to be inherited together during the meiosis phase of sexual reproduction. Two genetic markers that are physically near to each other are unlikely to be separated onto different chromatids during chromosomal crossover, and are therefore said to be more linked than markers that are far apart. In other words, the nearer two genes are on a chromosome, the lower the chance of recombination between them, and the more likely they are to be inherited together. Markers on different chromosomes are perfectly unlinked, although the penetrance of potentially deleterious alleles may be influenced by the presence of other alleles, and these other alleles may be located on other chromosomes than that on which a particular potentially deleterious allele is located.

<span class="mw-page-title-main">Equine coat color genetics</span> Genetics behind the equine coat color

Equine coat color genetics determine a horse's coat color. Many colors are possible, but all variations are produced by changes in only a few genes. Bay is the most common color of horse, followed by black and chestnut. A change at the agouti locus is capable of turning bay to black, while a mutation at the extension locus can turn bay or black to chestnut.

<span class="mw-page-title-main">Monohybrid cross</span> Cross between two organisms with different variations at one genetic locus of interest

A monohybrid cross is a cross between two organisms with different variations at one genetic locus of interest. The character(s) being studied in a monohybrid cross are governed by two or multiple variations for a single location of a gene. Then carry out such a cross, each parent is chosen to be homozygous or true breeding for a given trait (locus). When a cross satisfies the conditions for a monohybrid cross, it is usually detected by a characteristic distribution of second-generation (F2) offspring that is sometimes called the monohybrid ratio.

<span class="mw-page-title-main">Non-Mendelian inheritance</span> Type of pattern of inheritance

Non-Mendelian inheritance is any pattern in which traits do not segregate in accordance with Mendel's laws. These laws describe the inheritance of traits linked to single genes on chromosomes in the nucleus. In Mendelian inheritance, each parent contributes one of two possible alleles for a trait. If the genotypes of both parents in a genetic cross are known, Mendel's laws can be used to determine the distribution of phenotypes expected for the population of offspring. There are several situations in which the proportions of phenotypes observed in the progeny do not match the predicted values.

<span class="mw-page-title-main">Human genetics</span> Study of inheritance as it occurs in human beings

Human genetics is the study of inheritance as it occurs in human beings. Human genetics encompasses a variety of overlapping fields including: classical genetics, cytogenetics, molecular genetics, biochemical genetics, genomics, population genetics, developmental genetics, clinical genetics, and genetic counseling.

Dihybrid cross is a cross between two individuals with two observed traits that are controlled by two distinct genes. The idea of a dihybrid cross came from Gregor Mendel when he observed pea plants that were either yellow or green and either round or wrinkled. Crossing of two heterozygous individuals will result in predictable ratios for both genotype and phenotype in the offspring. The expected phenotypic ratio of crossing heterozygous parents would be 9:3:3:1. Deviations from these expected ratios may indicate that the two traits are linked or that one or both traits has a non-Mendelian mode of inheritance.

In genetics, a reciprocal cross is a breeding experiment designed to test the role of parental sex on a given inheritance pattern. All parent organisms must be true breeding to properly carry out such an experiment. In one cross, a male expressing the trait of interest will be crossed with a female not expressing the trait. In the other, a female expressing the trait of interest will be crossed with a male not expressing the trait. It is the cross that could be made either way or independent of the sex of the parents. For example, suppose a biologist wished to identify whether a hypothetical allele Z, a variant of some gene A, is on the male or female sex chromosome. They might first cross a Z-trait female with an A-trait male and observe the offspring. Next, they would cross an A-trait female with a Z-trait male and observe the offspring. Via principles of dominant and recessive alleles, they could then make an inference as to which sex chromosome contains the gene Z, if either in fact did.

<span class="mw-page-title-main">Test cross</span>

Under the law of dominance in genetics, an individual expressing a dominant phenotype could contain either two copies of the dominant allele or one copy of each dominant and recessive allele. By performing a test cross, one can determine whether the individual is heterozygous or homozygous dominant.

The term transheterozygote is used in modern genetics periodicals in two different ways. In the first, the transheterozygote has one mutant (-) and one wildtype allele (+) at each of two different genes. In the second, the transheterozygote carries two different mutated alleles of the same gene. This second definition also applies to the term "heteroallelic combination".

Out-crossing or out-breeding is the technique of crossing between different breeds. This is the practice of introducing distantly related genetic material into a breeding line, thereby increasing genetic diversity.

Lethal alleles are alleles that cause the death of the organism that carries them. They are usually a result of mutations in genes that are essential for growth or development. Lethal alleles may be recessive, dominant, or conditional depending on the gene or genes involved.

<span class="mw-page-title-main">Labrador Retriever coat colour genetics</span> Genetics behind Labrador Retriever coat colour

The genetic basis of coat colour in the Labrador Retriever has been found to depend on several distinct genes. The interplay among these genes is used as an example of epistasis.

<span class="mw-page-title-main">Particulate inheritance</span>

Particulate inheritance is a pattern of inheritance discovered by Mendelian genetics theorists, such as William Bateson, Ronald Fisher or Gregor Mendel himself, showing that phenotypic traits can be passed from generation to generation through "discrete particles" known as genes, which can keep their ability to be expressed while not always appearing in a descending generation.

<span class="mw-page-title-main">Zygosity</span> Degree of similarity of the alleles in an organism

Zygosity is the degree to which both copies of a chromosome or gene have the same genetic sequence. In other words, it is the degree of similarity of the alleles in an organism.

Classical genetics is the branch of genetics based solely on visible results of reproductive acts. It is the oldest discipline in the field of genetics, going back to the experiments on Mendelian inheritance by Gregor Mendel who made it possible to identify the basic mechanisms of heredity. Subsequently, these mechanisms have been studied and explained at the molecular level.

References

  1. Mendel, Gregor Johann (1866) [1865]. Versuche über Pflanzen-Hybriden. Verhandlungen des naturforschenden Vereins (in German and English). Vol. IV (Separate ed.). Brno: Verlag des naturforschender Vereins zu Brünn / Georg Gastl's Buchdruckerei /. p. 14. Archived from the original on 2021-03-29. Retrieved 2020-06-01.{{cite book}}: |work= ignored (help)
  2. Mendel, Gregor Johann (1866) [1865]. Versuche über Pflanzen-Hybriden. Verhandlungen des naturforschenden Vereins (in German and English). Vol. IV (Separate ed.). Brno: Verlag des naturforschender Vereins zu Brünn / Georg Gastl's Buchdruckerei. p. 47. Archived from the original on 2021-03-29. Retrieved 2020-06-01.{{cite book}}: |work= ignored (help)
  3. Punnett, Reginald Crundall (1907). Mendelism (2 ed.). London, UK: Macmillan. (NB. The 1905 first edition of this book does not contain the Punnett square. In 1911, the third edition gives a more thorough explanation.)
  4. Edwards, Anthony William Fairbank (March 2012). "Punnett's square". Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences . 43 (1): 219–224. doi:10.1016/j.shpsc.2011.11.011. PMID   22326091. Abstract: The origin and development of Punnett's Square for the enumeration and display of genotypes arising in a cross in Mendelian genetics is described. Due to R. C. Punnett, the idea evolved through the work of the 'Cambridge geneticists', including Punnett's colleagues William Bateson, E. R. Saunders and R. H. Lock, soon after the rediscovery of Mendel's paper in 1900. These geneticists were thoroughly familiar with Mendel's paper, which itself contained a similar square diagram. A previously-unpublished three-factor diagram by Sir Francis Galton existing in the Bateson correspondence in Cambridge University Library is then described. Finally the connection between Punnett's Square and Venn Diagrams is emphasized, and it is pointed out that Punnett, Lock and John Venn overlapped as Fellows of Gonville and Caius College, Cambridge.
  5. Edwards, Anthony William Fairbank (September 2012). "Reginald Crundall Punnett: First Arthur Balfour Professor of Genetics, Cambridge, 1912". Perspectives. Genetics . 192 (1). Gonville and Caius College, Cambridge, UK: Genetics Society of America: 3–13. doi:10.1534/genetics.112.143552. PMC   3430543 . PMID   22964834. pp. 5–6: [...] Punnett's square seems to have been a development of 1905, too late for the first edition of his Mendelism (May 1905) but much in evidence in Report III to the Evolution Committee of the Royal Society [(Bateson et al. 1906b) "received March 16, 1906"]. The earliest mention is contained in a letter to Bateson from Francis Galton dated October 1, 1905 (Edwards 2012). We have the testimony of Bateson (1909, p. 57) that "For the introduction of this system [the 'graphic method'], which greatly simplifies difficult cases, I am indebted to Mr. Punnett." [...] The first published diagrams appeared in 1906. [...] when Punnett published the second edition of his Mendelism, he used a slightly different format ([...] Punnett 1907, p. 45) [...] In the third edition (Punnett 1911, p. 34) he reverted to the arrangement [...] with a description of the construction of what he called the "chessboard" method (although in truth it is more like a multiplication table). [...] (11 pages)
  6. Wimsatt, William C. (2012-05-15), "The analytic geometry of genetics: Part I: the structure, function, and early evolution of Punnett squares", Archive for History of Exact Sciences , 66 (66): 359–396 [359], doi:10.1007/s00407-012-0096-7, S2CID   119557681
  7. Edwards, Anthony William Fairbank (June 2016). "Punnett's square: a postscript". Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences . 57. Elsevier Ltd.: 69–70. doi:10.1016/j.shpsc.2016.01.001 . Retrieved 2021-03-29. (2 pages)
  8. Müller-Wille, Staffan; Parolini, Giuditta (2020-12-09). "Punnett squares and hybrid crosses: how Mendelians learned their trade by the book". Learning by the Book: Manuals and Handbooks in the History of Science. BJHS Themes. Vol. 5. British Society for the History of Science / Cambridge University Press. pp. 149–165. doi:10.1017/bjt.2020.12. S2CID   229344415. Archived from the original on 2021-03-29. Retrieved 2021-03-29. [...] Nilsson-Ehle was experimenting with a visual arrangement that would become very popular in Mendelian genetics. The lower half of his notes comes close to what is known as the 'Punnett square' [...] Punnett introduced this square diagram to the literature in 1906 in a paper co-authored with Bateson and Edith R. Saunders, and included it in the second edition of his Mendelism. In the third edition (1911), he added a verbal description of how to construct the diagram, and the Punnett square became a standard feature of Mendelian literature. As a detailed reconstruction by A.W.F. Edwards has shown, the diagram first took shape in an exchange of letters between Bateson and Galton for the more complex case of a trihybrid cross, and may well have been inspired by the way in which Mendel presented a case of trifactorial inheritance of flower colour in beans. [...]
  9. Griffiths, Anthony J. F.; Miller, Jeffrey H.; Suzuki, David T.; Lewontin, Richard C.; Gelbart, William M. (2000). An Introduction to Genetic Analysis (7 ed.). New York, USA: W. H. Freeman.
  10. Basu, Arkatappa. ""The Hindu ePaper | Daily News and Current Affairs"". epaper.thehindu.com. No. 1 April 2024. The Hindu. Retrieved 2024-04-01.
  11. AthenaMyth (2014-06-16). "Dominant/Recessive vs Hetero/Homozygous". DeviantArt. Archived from the original on 2021-03-29. Retrieved 2017-11-19.
  12. Shiel Jr., William C. (2018-12-12) [2017]. "Medical Definition of Hemizygous". MedicineNet. MedicineNet, Inc. Archived from the original on 2021-03-29. Retrieved 2017-11-19.
  13. Robles, Ivan Suarez (2010-11-16). "nullizygous". Huntington's Outreach Project for Education, at Stanford (hopes). web.stanford.edu. Archived from the original on 2021-03-29. Retrieved 2017-11-19.

Further reading