Monohybrid cross

Last updated

A monohybrid cross is a cross between two organisms with different variations at one genetic locus of interest. [1] [2] The character(s) being studied in a monohybrid cross are governed by two or multiple variations for a single location of a gene. Then carry out such a cross, each parent is chosen to be homozygous or true breeding for a given trait (locus). When a cross satisfies the conditions for a monohybrid cross, it is usually detected by a characteristic distribution of second-generation (F2) offspring that is sometimes called the monohybrid ratio.

Contents

Figure 1: Inheritance pattern of dominant (red) and recessive (white) phenotypes when each parent (1) is homozygous for either the dominant or recessive trait. All members of the F1 generation are heterozygous and share the same dominant phenotype (2), while the F2 generation exhibits a 6:2 ratio of dominant to recessive phenotypes (3). Mendelian inheritance.svg
Figure 1: Inheritance pattern of dominant (red) and recessive (white) phenotypes when each parent (1) is homozygous for either the dominant or recessive trait. All members of the F1 generation are heterozygous and share the same dominant phenotype (2), while the F2 generation exhibits a 6:2 ratio of dominant to recessive phenotypes (3).

Usage

Generally, the monohybrid cross is used to determine the dominance relationship between two alleles. The cross begins with the parental generation. One parent is homozygous for one allele, and the other parent is homozygous for the other allele. The offspring make up the first filial (F1) generation. Every member of the F1 generation is heterozygous and the phenotype of the F1 generation expresses the dominant trait. [3] Crossing two members of the F1 generation produces the second filial (F2) generation. Probability theory predicts that three quarters of the F2 generation will have the dominant allele's phenotype. And the remaining quarter of the F2s will have the recessive allele's phenotype. This predicted 3:1 phenotypic ratio assumes Mendelian inheritance.

Mendel's experiment with peas (Pisum sativum)

Gregor Mendel (1822–1884) was an Austrian monk who theorized basic rules of inheritance. [4] From 1858 to 1866, he bred garden peas ( Pisum sativum ) in his monastery garden and analyzed the offspring of these matings. The garden pea was chosen as an experimental organism because many varieties were available that bred true for qualitative traits and their pollination could be manipulated. The seven variable characteristics Mendel investigated in pea plants were. [5]

. [6] Peas are normally self-pollinated because the stamens and carpels are enclosed within the petals. By removing the stamens from unripe flowers, Mendel could brush pollen from another variety on the carpels when they ripened. [7]

First cross

All the peas produced in the second or hybrid generation were round.

All the peas of this F1 generation have an Rr genotype. All the haploid sperm and eggs produced by meiosis received one chromosome 7. All the zygotes received one R allele (from the round seed parent) and one r allele (from the wrinkled seed parent). Because the R allele is dominant to the r allele, the phenotype of all the seeds was round. The phenotypic ratio in this case of Monohybrid cross is 1.

P gametes
(round
parent)
P gametes
(wrinkled parent)
RR
rRrRr
rRrRr

Second cross

Mendel then allowed his hybrid peas to self-pollinate. The wrinkled trait—which did not appear in his hybrid generation—reappeared in 25% of the new crop of peas.

Random union of equal numbers of R and r gametes produced an F2 generation with 25% RR and 50% Rr—both with the round phenotype—and 25% rr with the wrinkled phenotype.

F1 gametes

F1 gametes
Rr
RRRRr
rRrrr

Third cross

Mendel then allowed some of each phenotype in the F2 generation to self-pollinate. His results:

One-third of the round seeds and all of the wrinkled seeds in the F2 generation were homozygous and produced only seeds of the same phenotype.

But two thirds of the round seeds in the F2 were heterozygous and their self-pollination produced both phenotypes in the ratio of a typical F1 cross.

Phenotype ratios are approximate. [8] The union of sperm and eggs is random. As the size of the sample gets larger, however, chance deviations become minimized and the ratios approach the theoretical predictions more closely. The table shows the actual seed production by ten of Mendel's F1 plants. While his individual plants deviated widely from the expected 3:1 ratio, the group as a whole approached it quite closely.

RoundWrinkled
4512
278
247
1916
3211
266
8824
2210
286
257
Total: 336Total: 107

Mendel's hypothesis

To explain his results, Mendel formulated a hypothesis that included the following: In the organism, there is a pair of factors that controls the appearance of a given characteristic. (They are called genes.) The organism inherits these factors from its parents, one from each. A factor is transmitted from generation to generation as a discrete, unchanging unit. (The r factor in the F2 generation passed through the round-seeded F1 generation. In spite of this, the rr seeds in the F2 generation were no less wrinkled than those in the P generation.) When the gametes are formed, the factors separate and are distributed as units to each gamete. This statement is often called Mendel's rule of segregation. If an organism has two unlike factors (called alleles) for a characteristic, one may be expressed to the total exclusion of the other (dominant vs recessive).

Test of the hypothesis

A good hypothesis meets several standards.

In order to test his hypothesis, Mendel predicted the outcome of a breeding experiment that he had not carried out yet. He crossed heterozygous round peas (Rr) with wrinkled (homozygous, rr) ones. He predicted that in this case one-half of the seeds produced would be round (Rr) and one-half wrinkled (rr).

F1 gametes

P gametes
Rr
rRrrr
rRrrr

To a casual observer in the monastery garden, the cross appeared no different from the P cross described above: round-seeded peas being crossed with wrinkled-seeded ones. But Mendel predicted that this time he would produce both round and wrinkled seeds and in a 50:50 ratio. He performed the cross and harvested 106 round peas and 101 wrinkled peas.

Mendel tested his hypothesis with a type of backcross called a testcross. An organism has an unknown genotype which is one of two genotypes (like RR and Rr) that produce the same phenotype. The result of the test identifies the unknown genotype.

Mendel did not stop there. He went on to cross pea varieties that differed in six other qualitative traits. In every case, the results supported his hypothesis. He crossed peas that differed in two traits. He found that the inheritance of one trait was independent of that of the other and so framed his second rule: the rule of independent assortment. Today, it is known that this rule does not apply to some genes, due to genetic linkage. [9]

See also

Related Research Articles

An allele is a variation of the same sequence of nucleotides at the same place on a long DNA molecule, as described in leading textbooks on genetics and evolution.

<span class="mw-page-title-main">Genetics</span> Science of genes, heredity, and variation in living organisms

Genetics is the study of genes, genetic variation, and heredity in organisms. It is an important branch in biology because heredity is vital to organisms' evolution. Gregor Mendel, a Moravian Augustinian friar working in the 19th century in Brno, was the first to study genetics scientifically. Mendel studied "trait inheritance", patterns in the way traits are handed down from parents to offspring over time. He observed that organisms inherit traits by way of discrete "units of inheritance". This term, still used today, is a somewhat ambiguous definition of what is referred to as a gene.

The genotype of an organism is its complete set of genetic material. Genotype can also be used to refer to the alleles or variants an individual carries in a particular gene or genetic location. The number of alleles an individual can have in a specific gene depends on the number of copies of each chromosome found in that species, also referred to as ploidy. In diploid species like humans, two full sets of chromosomes are present, meaning each individual has two alleles for any given gene. If both alleles are the same, the genotype is referred to as homozygous. If the alleles are different, the genotype is referred to as heterozygous.

<span class="mw-page-title-main">Mendelian inheritance</span> Type of biological inheritance

Mendelian inheritance is a type of biological inheritance following the principles originally proposed by Gregor Mendel in 1865 and 1866, re-discovered in 1900 by Hugo de Vries and Carl Correns, and later popularized by William Bateson. These principles were initially controversial. When Mendel's theories were integrated with the Boveri–Sutton chromosome theory of inheritance by Thomas Hunt Morgan in 1915, they became the core of classical genetics. Ronald Fisher combined these ideas with the theory of natural selection in his 1930 book The Genetical Theory of Natural Selection, putting evolution onto a mathematical footing and forming the basis for population genetics within the modern evolutionary synthesis.

<span class="mw-page-title-main">Phenotypic trait</span> Inherited characteristic of an organism

A phenotypic trait, simply trait, or character state is a distinct variant of a phenotypic characteristic of an organism; it may be either inherited or determined environmentally, but typically occurs as a combination of the two. For example, having eye color is a character of an organism, while blue, brown and hazel versions of eye colour are traits. The term trait is generally used in genetics, often to describe phenotypic expression of different combinations of alleles in different individual organisms within a single population, such as the famous purple vs. white flower coloration in Gregor Mendel's pea plants. By contrast, in systematics, the term is character state is employed to describe features that represent fixed diagnostic differences among taxa, such as the absence of tails in great apes, relative to other primate groups.

<span class="mw-page-title-main">Dominance (genetics)</span> One gene variant masking the effect of another in the other copy of the gene

In genetics, dominance is the phenomenon of one variant (allele) of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome. The first variant is termed dominant and the second recessive. This state of having two different variants of the same gene on each chromosome is originally caused by a mutation in one of the genes, either new or inherited. The terms autosomal dominant or autosomal recessive are used to describe gene variants on non-sex chromosomes (autosomes) and their associated traits, while those on sex chromosomes (allosomes) are termed X-linked dominant, X-linked recessive or Y-linked; these have an inheritance and presentation pattern that depends on the sex of both the parent and the child. Since there is only one copy of the Y chromosome, Y-linked traits cannot be dominant or recessive. Additionally, there are other forms of dominance such as incomplete dominance, in which a gene variant has a partial effect compared to when it is present on both chromosomes, and co-dominance, in which different variants on each chromosome both show their associated traits.

Genetic linkage is the tendency of DNA sequences that are close together on a chromosome to be inherited together during the meiosis phase of sexual reproduction. Two genetic markers that are physically near to each other are unlikely to be separated onto different chromatids during chromosomal crossover, and are therefore said to be more linked than markers that are far apart. In other words, the nearer two genes are on a chromosome, the lower the chance of recombination between them, and the more likely they are to be inherited together. Markers on different chromosomes are perfectly unlinked, although the penetrance of potentially deleterious alleles may be influenced by the presence of other alleles, and these other alleles may be located on other chromosomes than that on which a particular potentially deleterious allele is located.

<span class="mw-page-title-main">Punnett square</span> Tabular summary of genetic combinations

The Punnett square is a square diagram that is used to predict the genotypes of a particular cross or breeding experiment. It is named after Reginald C. Punnett, who devised the approach in 1905. The diagram is used by biologists to determine the probability of an offspring having a particular genotype. The Punnett square is a tabular summary of possible combinations of maternal alleles with paternal alleles. These tables can be used to examine the genotypical outcome probabilities of the offspring of a single trait (allele), or when crossing multiple traits from the parents. The Punnett square is a visual representation of Mendelian inheritance. It is important to understand the terms "heterozygous", "homozygous", "double heterozygote", "dominant allele" and "recessive allele" when using the Punnett square method. For multiple traits, using the "forked-line method" is typically much easier than the Punnett square. Phenotypes may be predicted with at least better-than-chance accuracy using a Punnett square, but the phenotype that may appear in the presence of a given genotype can in some instances be influenced by many other factors, as when polygenic inheritance and/or epigenetics are at work.

Heterosis, hybrid vigor, or outbreeding enhancement is the improved or increased function of any biological quality in a hybrid offspring. An offspring is heterotic if its traits are enhanced as a result of mixing the genetic contributions of its parents. These effects can be due to Mendelian or non-Mendelian inheritance.

A heterozygote advantage describes the case in which the heterozygous genotype has a higher relative fitness than either the homozygous dominant or homozygous recessive genotype. Loci exhibiting heterozygote advantage are a small minority of loci. The specific case of heterozygote advantage due to a single locus is known as overdominance. Overdominance is a rare condition in genetics where the phenotype of the heterozygote lies outside of the phenotypical range of both homozygote parents, and heterozygous individuals have a higher fitness than homozygous individuals.

An F1 hybrid (also known as filial 1 hybrid) is the first filial generation of offspring of distinctly different parental types. F1 hybrids are used in genetics, and in selective breeding, where the term F1 crossbreed may be used. The term is sometimes written with a subscript, as F1 hybrid. Subsequent generations are called F2, F3, etc.

<span class="mw-page-title-main">Non-Mendelian inheritance</span> Type of pattern of inheritance

Non-Mendelian inheritance is any pattern in which traits do not segregate in accordance with Mendel's laws. These laws describe the inheritance of traits linked to single genes on chromosomes in the nucleus. In Mendelian inheritance, each parent contributes one of two possible alleles for a trait. If the genotypes of both parents in a genetic cross are known, Mendel's laws can be used to determine the distribution of phenotypes expected for the population of offspring. There are several situations in which the proportions of phenotypes observed in the progeny do not match the predicted values.

Genetics, a discipline of biology, is the science of heredity and variation in living organisms.

Dihybrid cross is a cross between two individuals with two observed traits that are controlled by two distinct genes. The idea of a dihybrid cross came from Gregor Mendel when he observed pea plants that were either yellow or green and either round or wrinkled. Crossing of two heterozygous individuals will result in predictable ratios for both genotype and phenotype in the offspring. The expected phenotypic ratio of crossing heterozygous parents would be 9:3:3:1. Deviations from these expected ratios may indicate that the two traits are linked or that one or both traits has a non-Mendelian mode of inheritance.

<span class="mw-page-title-main">Test cross</span>

Under the law of dominance in genetics, an individual expressing a dominant phenotype could contain either two copies of the dominant allele or one copy of each dominant and recessive allele. By performing a test cross, one can determine whether the individual is heterozygous or homozygous dominant.

Lethal alleles are alleles that cause the death of the organism that carries them. They are usually a result of mutations in genes that are essential for growth or development. Lethal alleles may be recessive, dominant, or conditional depending on the gene or genes involved.

Marker assisted selection or marker aided selection (MAS) is an indirect selection process where a trait of interest is selected based on a marker linked to a trait of interest, rather than on the trait itself. This process has been extensively researched and proposed for plant and animal breeding.

A doubled haploid (DH) is a genotype formed when haploid cells undergo chromosome doubling. Artificial production of doubled haploids is important in plant breeding.

<span class="mw-page-title-main">Zygosity</span> Degree of similarity of the alleles in an organism

Zygosity is the degree to which both copies of a chromosome or gene have the same genetic sequence. In other words, it is the degree of similarity of the alleles in an organism.

Classical genetics is the branch of genetics based solely on visible results of reproductive acts. It is the oldest discipline in the field of genetics, going back to the experiments on Mendelian inheritance by Gregor Mendel who made it possible to identify the basic mechanisms of heredity. Subsequently, these mechanisms have been studied and explained at the molecular level.

References

  1. Solomon, Eldra Pearl; Linda R. Berg; Diana W. Martin (February 2004). Biology. Cengage Learning. ISBN   978-0-534-49276-2.
  2. Campbell, Neil A. (2006). Biology: concepts & connections. Pearson/Benjamin Cummings. ISBN   978-0-8053-7160-4.
  3. Pierce, Benjamin A. (2014). Genetics : a conceptual approach (5th ed.). [S.l.: s.n.] ISBN   978-1464109461.
  4. Ellis, T.H. Noel; Hofer, Julie M.I.; Timmerman-Vaughan, Gail M.; Coyne, Clarice J.; Hellens, Roger P. (November 2011). "Mendel, 150 years on". Trends in Plant Science. 16 (11): 590–596. doi:10.1016/j.tplants.2011.06.006. PMID   21775188.
  5. Pierce, Benjamin A. (2014). Genetics : a conceptual approach (5th ed.). [S.l.: s.n.] ISBN   978-1464109461.
  6. Reid, James B.; Ross, John J. (2011-09-01). "Mendel's Genes: Toward a Full Molecular Characterization". Genetics. 189 (1): 3–10. doi:10.1534/genetics.111.132118. ISSN   0016-6731. PMC   3176118 . PMID   21908742.
  7. Smýkal, Petr; Varshney, Rajeev K.; Singh, Vikas K.; Coyne, Clarice J.; Domoney, Claire; Kejnovský, Eduard; Warkentin, Thomas (2016-10-07). "From Mendel's discovery on pea to today's plant genetics and breeding" (PDF). Theoretical and Applied Genetics. 129 (12): 2267–2280. doi:10.1007/s00122-016-2803-2. ISSN   0040-5752. PMID   27717955. S2CID   6017487.
  8. Piegorsch, W. W. (1990-12-01). "Fisher's contributions to genetics and heredity, with special emphasis on the Gregor Mendel controversy". Biometrics. 46 (4): 915–924. doi:10.2307/2532437. ISSN   0006-341X. JSTOR   2532437. PMID   2085640.
  9. Fairbanks, D. J.; Rytting, B. (2001-05-01). "Mendelian controversies: a botanical and historical review". American Journal of Botany. 88 (5): 737–752. doi:10.2307/2657027. ISSN   0002-9122. JSTOR   2657027. PMID   11353700.