SnapPea

Last updated
cusp view of the Borromean rings complement. A fundamental parallelogram is drawn. SnapPea-horocusp view.png
cusp view of the Borromean rings complement. A fundamental parallelogram is drawn.

SnapPea is free software designed to help mathematicians, in particular low-dimensional topologists, study hyperbolic 3-manifolds. The primary developer is Jeffrey Weeks, who created the first version [1] as part of his doctoral thesis, [2] supervised by William Thurston. It is not to be confused with the unrelated android malware with the same name. [3] [4] [5]

Contents

The latest version is 3.0d3. Marc Culler, Nathan Dunfield and collaborators have extended the SnapPea kernel and written Python extension modules which allow the kernel to be used in a Python program or in the interpreter. They also provide a graphical user interface written in Python which runs under most operating systems (see external links below).

The following people are credited in SnapPea 2.5.3's list of acknowledgments: Colin Adams, Bill Arveson, Pat Callahan, Joe Christy, Dave Gabai, Charlie Gunn, Martin Hildebrand, Craig Hodgson, Diane Hoffoss, A. C. Manoharan, Al Marden, Dick McGehee, Rob Meyerhoff, Lee Mosher, Walter Neumann, Carlo Petronio, Mark Phillips, Alan Reid, and Makoto Sakuma.

The C source code is extensively commented by Jeffrey Weeks and contains useful descriptions of the mathematics involved with references.

The SnapPeaKernel is released under GNU GPL 2+ [6] as is SnapPy. [7]

Algorithms and functions

At the core of SnapPea are two main algorithms. The first attempts to find a minimal ideal triangulation of a given link complement. The second computes the canonical decomposition of a cusped hyperbolic 3-manifold. Almost all the other functions of SnapPea rely in some way on one of these decompositions.

Minimal ideal triangulation

SnapPea inputs data in a variety of formats. Given a link diagram, SnapPea can ideally triangulate the link complement. It then performs a sequence of simplifications to find a locally minimal ideal triangulation.

Once a suitable ideal triangulation is found, SnapPea can try to find a hyperbolic structure. In his Princeton lecture notes, Thurston noted a method for describing the geometric shape of each hyperbolic tetrahedron by a complex number and a set of nonlinear equations of complex variables whose solution would give a complete hyperbolic metric on the 3-manifold. These equations consist of edge equations and cusp (completeness) equations. SnapPea uses an iterative method utilizing Newton's method to search for solutions. If no solution exists, then this is reported to the user.

The local minimality of the triangulation is meant to increase the likelihood that such a solution exists, since heuristically one might expect such a triangulation to be "straightened" without causing degenerations or overlapping of tetrahedra.

From this description of the hyperbolic structure on a link complement, SnapPea can then perform hyperbolic Dehn filling on the cusps to obtain more hyperbolic 3-manifolds. SnapPea does this by taking any given slopes which determine certain Dehn filling equations (also explained in Thurston's notes), and then adjusting the shapes of the ideal tetrahedra to give solutions to these equations and the edge equations. For almost all slopes, this gives an incomplete hyperbolic structure on the link complement, whose completion gives a hyperbolic structure on the Dehn-filled manifold. Its volume is the sum of the volumes of the adjusted tetrahedra.

Canonical decomposition

SnapPea is usually able to compute the canonical decomposition of a cusped hyperbolic 3-manifold from a given ideal triangulation. If not, then it randomly retriangulates and tries again. This has never been known to fail.

The canonical decomposition allows SnapPea to tell two cusped hyperbolic 3-manifolds apart by turning the problem of recognition into a combinatorial question, i.e. checking if the two manifolds have combinatorially equivalent canonical decompositions. SnapPea is also able to check if two closed hyperbolic 3-manifolds are isometric by drilling out short geodesics to create cusped hyperbolic 3-manifolds and then using the canonical decomposition as before.

The recognition algorithm allow SnapPea to tell two hyperbolic knots or links apart. Weeks, et al., were also able to compile different censuses of hyperbolic 3-manifolds by using the algorithm to cull lists of duplicates.

Additionally, from the canonical decomposition, SnapPea is able to:

Computable invariants

Censuses

SnapPea has several databases of hyperbolic 3-manifolds available for systematic study.

See also

Related Research Articles

<span class="mw-page-title-main">William Thurston</span> American mathematician

William Paul Thurston was an American mathematician. He was a pioneer in the field of low-dimensional topology and was awarded the Fields Medal in 1982 for his contributions to the study of 3-manifolds.

<span class="mw-page-title-main">Figure-eight knot (mathematics)</span> Unique knot with a crossing number of four

In knot theory, a figure-eight knot is the unique knot with a crossing number of four. This makes it the knot with the third-smallest possible crossing number, after the unknot and the trefoil knot. The figure-eight knot is a prime knot.

In mathematics, Thurston's geometrization conjecture states that each of certain three-dimensional topological spaces has a unique geometric structure that can be associated with it. It is an analogue of the uniformization theorem for two-dimensional surfaces, which states that every simply connected Riemann surface can be given one of three geometries . In three dimensions, it is not always possible to assign a single geometry to a whole topological space. Instead, the geometrization conjecture states that every closed 3-manifold can be decomposed in a canonical way into pieces that each have one of eight types of geometric structure. The conjecture was proposed by William Thurston (1982), and implies several other conjectures, such as the Poincaré conjecture and Thurston's elliptization conjecture.

<span class="mw-page-title-main">Low-dimensional topology</span> Branch of topology

In mathematics, low-dimensional topology is the branch of topology that studies manifolds, or more generally topological spaces, of four or fewer dimensions. Representative topics are the structure theory of 3-manifolds and 4-manifolds, knot theory, and braid groups. This can be regarded as a part of geometric topology. It may also be used to refer to the study of topological spaces of dimension 1, though this is more typically considered part of continuum theory.

<span class="mw-page-title-main">3-manifold</span> Mathematical space

In mathematics, a 3-manifold is a topological space that locally looks like a three-dimensional Euclidean space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below.

In mathematics, more precisely in topology and differential geometry, a hyperbolic 3-manifold is a manifold of dimension 3 equipped with a hyperbolic metric, that is a Riemannian metric which has all its sectional curvatures equal to −1. It is generally required that this metric be also complete: in this case the manifold can be realised as a quotient of the 3-dimensional hyperbolic space by a discrete group of isometries.

<span class="mw-page-title-main">Hyperbolic link</span> Type of mathematical link

In mathematics, a hyperbolic link is a link in the 3-sphere with complement that has a complete Riemannian metric of constant negative curvature, i.e. has a hyperbolic geometry. A hyperbolic knot is a hyperbolic link with one component.

Algorithmic topology, or computational topology, is a subfield of topology with an overlap with areas of computer science, in particular, computational geometry and computational complexity theory.

Peter B. Shalen is an American mathematician, working primarily in low-dimensional topology. He is the "S" in JSJ decomposition.

In mathematics, the Weeks manifold, sometimes called the Fomenko–Matveev–Weeks manifold, is a closed hyperbolic 3-manifold obtained by (5, 2) and (5, 1) Dehn surgeries on the Whitehead link. It has volume approximately equal to 0.942707… and David Gabai, Robert Meyerhoff, and Peter Milley (2009) showed that it has the smallest volume of any closed orientable hyperbolic 3-manifold. The manifold was independently discovered by Jeffrey Weeks (1985) as well as Sergei V. Matveev and Anatoly T. Fomenko (1988).

In mathematics, hyperbolic Dehn surgery is an operation by which one can obtain further hyperbolic 3-manifolds from a given cusped hyperbolic 3-manifold. Hyperbolic Dehn surgery exists only in dimension three and is one which distinguishes hyperbolic geometry in three dimensions from other dimensions.

<span class="mw-page-title-main">Regina (program)</span>

Regina is a suite of mathematical software for 3-manifold topologists. It focuses upon the study of 3-manifold triangulations and includes support for normal surfaces and angle structures.

<span class="mw-page-title-main">Hyperbolic volume</span> Normalized hyperbolic volume of the complement of a hyperbolic knot

In the mathematical field of knot theory, the hyperbolic volume of a hyperbolic link is the volume of the link's complement with respect to its complete hyperbolic metric. The volume is necessarily a finite real number, and is a topological invariant of the link. As a link invariant, it was first studied by William Thurston in connection with his geometrization conjecture.

In mathematics, more precisely in group theory and hyperbolic geometry, Arithmetic Kleinian groups are a special class of Kleinian groups constructed using orders in quaternion algebras. They are particular instances of arithmetic groups. An arithmetic hyperbolic three-manifold is the quotient of hyperbolic space by an arithmetic Kleinian group.

In mathematics, the Gieseking manifold is a cusped hyperbolic 3-manifold of finite volume. It is non-orientable and has the smallest volume among non-compact hyperbolic manifolds, having volume approximately . It was discovered by Hugo Gieseking (1912). The volume is called Gieseking constant and has a closed-form,

The geometry and topology of three-manifolds is a set of widely circulated but unpublished notes by William Thurston from 1978 to 1980 describing his work on 3-manifolds. The notes introduced several new ideas into geometric topology, including orbifolds, pleated manifolds, and train tracks.

Nathan Michael Dunfield is an American mathematician, specializing in Topology.

<i>Introduction to 3-Manifolds</i>

Introduction to 3-Manifolds is a mathematics book on low-dimensional topology. It was written by Jennifer Schultens and published by the American Mathematical Society in 2014 as volume 151 of their book series Graduate Studies in Mathematics.

<span class="mw-page-title-main">Ideal polyhedron</span> Shape in hyperbolic geometry

In three-dimensional hyperbolic geometry, an ideal polyhedron is a convex polyhedron all of whose vertices are ideal points, points "at infinity" rather than interior to three-dimensional hyperbolic space. It can be defined as the convex hull of a finite set of ideal points. An ideal polyhedron has ideal polygons as its faces, meeting along lines of the hyperbolic space.

References

  1. Weeks, Jeffrey R., SnapPea C source code, (1999)
  2. Weeks, Jeffrey R., Convex hulls and isometries of cusped hyperbolic $3$-manifolds. Topology Appl. 52 (1993), no. 2, 127—149.
  3. Fox-Brewster, Thomas. "Android 'Gooligan' Hackers Just Scored The Biggest Ever Theft Of Google Accounts". forbes.com. Retrieved 21 May 2017.
  4. "Adware or APT – SnapPea Downloader - An Android Malware that implements 12 different exploits". Check Point Blog. 10 July 2015. Retrieved 21 May 2017.
  5. "How to Manage Your Android Device from Windows with SnapPea". howtogeek.com. Retrieved 21 May 2017.
  6. ReadMe file for the SnapPea kernel, accessed 2013-09-06.
  7. "SnapPy — SnapPy 2.1 documentation". Math.uic.edu. Retrieved 2014-03-12.


  • hyperbolic manifolds with totally geodesic boundary
  • orbifolds where the orbifold locus contains trivalent vertices