Layered permutation

Last updated

In the mathematics of permutations, a layered permutation is a permutation that reverses contiguous blocks of elements. Equivalently, it is the direct sum of decreasing permutations. [1]

Contents

One of the earlier works establishing the significance of layered permutations was Bóna (1999), which established the Stanley–Wilf conjecture for classes of permutations forbidding a layered permutation, before the conjecture was proven more generally. [2]

Example

For instance, the layered permutations of length four, with the reversed blocks separated by spaces, are the eight permutations

1 2 3 4
1 2 43
1 32 4
1 432
21 3 4
21 43
321 4
4321

Characterization by forbidden patterns

The layered permutations can also be equivalently described as the permutations that do not contain the permutation patterns 231 or 312. That is, no three elements in the permutation (regardless of whether they are consecutive) have the same ordering as either of these forbidden triples.

Enumeration

A layered permutation on the numbers from to can be uniquely described by the subset of the numbers from to that are the first element in a reversed block. (The number is always the first element in its reversed block, so it is redundant for this description.) Because there are subsets of the numbers from to , there are also layered permutation of length .

The layered permutations are Wilf equivalent to other permutation classes, meaning that the numbers of permutations of each length are the same. For instance, the Gilbreath permutations are counted by the same function . [3]

Superpatterns

The shortest superpattern of the layered permutations of length is itself a layered permutation. Its length is a sorting number, the number of comparisons needed for binary insertion sort to sort elements. [1] [4] For these numbers are

1, 3, 5, 8, 11, 14, 17, 21, 25, 29, 33, 37, ... (sequence A001855 in the OEIS )

and in general they are given by the formula

[1]

Every layered permutation is an involution. They are exactly the 231-avoiding involutions, and they are also exactly the 312-avoiding involutions. [5]

The layered permutations are a subset of the stack-sortable permutations, which forbid the pattern 231 but not the pattern 312. Like the stack-sortable permutations, they are also a subset of the separable permutations, the permutations formed by recursive combinations of direct and skew sums.

Related Research Articles

Permutation Change of ordering in a (mathematical) set

In mathematics, a permutation of a set is, loosely speaking, an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its elements. The word "permutation" also refers to the act or process of changing the linear order of an ordered set.

In combinatorial mathematics, the Bell numbers count the possible partitions of a set. These numbers have been studied by mathematicians since the 19th century, and their roots go back to medieval Japan. In an example of Stigler's law of eponymy, they are named after Eric Temple Bell, who wrote about them in the 1930s.

In arithmetic combinatorics, Szemerédi's theorem is a result concerning arithmetic progressions in subsets of the integers. In 1936, Erdős and Turán conjectured that every set of integers A with positive natural density contains a k-term arithmetic progression for every k. Endre Szemerédi proved the conjecture in 1975.

The arboricity of an undirected graph is the minimum number of forests into which its edges can be partitioned. Equivalently it is the minimum number of spanning forests needed to cover all the edges of the graph. The Nash-Williams theorem provides necessary and sufficient conditions for when a graph is k-arboric.

Comparison sort Type of sorting algorithm that works by comparing pairs of elements

A comparison sort is a type of sorting algorithm that only reads the list elements through a single abstract comparison operation that determines which of two elements should occur first in the final sorted list. The only requirement is that the operator forms a total preorder over the data, with:

  1. if ab and bc then ac (transitivity)
  2. for all a and b, ab or ba (connexity).

In the mathematical study of permutations and permutation patterns, a superpattern or universal permutation is a permutation that contains all of the patterns of a given length. More specifically, a k-superpattern contains all possible patterns of length k.

The Stanley–Wilf conjecture, formulated independently by Richard P. Stanley and Herbert Wilf in the late 1980s, states that the growth rate of every proper permutation class is singly exponential. It was proved by Adam Marcus and Gábor Tardos (2004) and is no longer a conjecture. Marcus and Tardos actually proved a different conjecture, due to Zoltán Füredi and Péter Hajnal (1992), which had been shown to imply the Stanley–Wilf conjecture by Klazar (2000).

Discrepancy of hypergraphs is an area of discrepancy theory.

In combinatorics, the Cameron–Erdős conjecture is the statement that the number of sum-free sets contained in is

Inversion (discrete mathematics) Pair of positions in a sequence where two elements are out of sorted order

In computer science and discrete mathematics, an inversion in a sequence is a pair of elements that are out of their natural order.

In combinatorial mathematics and theoretical computer science, a permutation pattern is a sub-permutation of a longer permutation. Any permutation may be written in one-line notation as a sequence of digits representing the result of applying the permutation to the digit sequence 123...; for instance the digit sequence 213 represents the permutation on three elements that swaps elements 1 and 2. If π and σ are two permutations represented in this way, then π is said to contain σ as a pattern if some subsequence of the digits of π has the same relative order as all of the digits of σ.

In the study of permutation patterns, there has been considerable interest in enumerating specific permutation classes, especially those with relatively few basis elements. This area of study has turned up unexpected instances of Wilf equivalence, where two seemingly-unrelated permutation classes have the same numbers of permutations of each length.

In combinatorial mathematics, a partial permutation, or sequence without repetition, on a finite set S is a bijection between two specified subsets of S. That is, it is defined by two subsets U and V of equal size, and a one-to-one mapping from U to V. Equivalently, it is a partial function on S that can be extended to a permutation.

A Gilbreath shuffle is a way to shuffle a deck of cards, named after mathematician Norman Gilbreath. Gilbreath's principle describes the properties of a deck that are preserved by this type of shuffle, and a Gilbreath permutation is a permutation that can be formed by a Gilbreath shuffle.

In mathematics and computer science, a stack-sortable permutation is a permutation whose elements may be sorted by an algorithm whose internal storage is limited to a single stack data structure. The stack-sortable permutations are exactly the permutations that do not contain the permutation pattern 231; they are counted by the Catalan numbers, and may be placed in bijection with many other combinatorial objects with the same counting function including Dyck paths and binary trees.

Richard Alejandro Arratia is a mathematician noted for his work in combinatorics and probability theory.

In the study of permutations and permutation patterns, a permutation class is a set of permutations such that every pattern within a permutation in is also in . In other words, a permutation class is a hereditary property of permutations, or a downset in the permutation pattern order. A permutation class may also be known as a pattern class, closed class, or simply class of permutations.

In mathematics and computer science, the sorting numbers are a sequence of numbers introduced in 1950 by Hugo Steinhaus for the analysis of comparison sort algorithms. These numbers give the worst-case number of comparisons used by both binary insertion sort and merge sort. However there are other algorithms that use fewer comparisons.

In computer science, merge-insertion sort or the Ford–Johnson algorithm is a comparison sorting algorithm published in 1959 by L. R. Ford Jr. and Selmer M. Johnson. It uses fewer comparisons in the worst case than the best previously known algorithms, binary insertion sort and merge sort, and for 20 years it was the sorting algorithm with the fewest known comparisons. Although not of practical significance, it remains of theoretical interest in connection with the problem of sorting with a minimum number of comparisons. The same algorithm may have also been independently discovered by Stanisław Trybuła and Czen Ping.

In arithmetic combinatorics, Behrend's theorem states that the subsets of the integers from 1 to in which no member of the set is a multiple of any other must have a logarithmic density that goes to zero as becomes large. The theorem is named after Felix Behrend, who published it in 1935.

References

  1. 1 2 3 Albert, Michael; Engen, Michael; Pantone, Jay; Vatter, Vincent (2018), "Universal layered permutations", Electronic Journal of Combinatorics , 25 (3): P23:1–P23:5
  2. Bóna, Miklós (1999), "The solution of a conjecture of Stanley and Wilf for all layered patterns", Journal of Combinatorial Theory , Series A, 85 (1): 96–104, doi: 10.1006/jcta.1998.2908 , MR   1659444
  3. Robertson, Aaron (2001), "Permutations restricted by two distinct patterns of length three", Advances in Applied Mathematics, 27 (2–3): 548–561, arXiv: math/0012029 , doi:10.1006/aama.2001.0749, MR   1868980
  4. Gray, Daniel (2015), "Bounds on superpatterns containing all layered permutations", Graphs and Combinatorics, 31 (4): 941–952, doi:10.1007/s00373-014-1429-x, MR   3357666
  5. Egge, Eric S.; Mansour, Toufik (2004), "231-avoiding involutions and Fibonacci numbers", The Australasian Journal of Combinatorics, 30: 75–84, arXiv: math/0209255 , MR   2080455