Entscheidungsproblem

Last updated

In mathematics and computer science, the Entscheidungsproblem ( German for 'decision problem'; pronounced [ɛntˈʃaɪ̯dʊŋspʁoˌbleːm] ) is a challenge posed by David Hilbert and Wilhelm Ackermann in 1928. [1] The problem asks for an algorithm that considers, as input, a statement and answers "yes" or "no" according to whether the statement is universally valid, i.e., valid in every structure.

Contents

Completeness theorem

By the completeness theorem of first-order logic, a statement is universally valid if and only if it can be deduced using logical rules and axioms, so the Entscheidungsproblem can also be viewed as asking for an algorithm to decide whether a given statement is provable using the rules of logic.

In 1936, Alonzo Church and Alan Turing published independent papers [2] showing that a general solution to the Entscheidungsproblem is impossible, assuming that the intuitive notion of "effectively calculable" is captured by the functions computable by a Turing machine (or equivalently, by those expressible in the lambda calculus). This assumption is now known as the Church–Turing thesis.

History of the problem

The origin of the Entscheidungsproblem goes back to Gottfried Leibniz, who in the seventeenth century, after having constructed a successful mechanical calculating machine, dreamt of building a machine that could manipulate symbols in order to determine the truth values of mathematical statements. [3] He realized that the first step would have to be a clean formal language, and much of his subsequent work was directed toward that goal. In 1928, David Hilbert and Wilhelm Ackermann posed the question in the form outlined above.

In continuation of his "program", Hilbert posed three questions at an international conference in 1928, the third of which became known as "Hilbert's Entscheidungsproblem". [4] In 1929, Moses Schönfinkel published one paper on special cases of the decision problem, that was prepared by Paul Bernays. [5]

As late as 1930, Hilbert believed that there would be no such thing as an unsolvable problem. [6]

Negative answer

Before the question could be answered, the notion of "algorithm" had to be formally defined. This was done by Alonzo Church in 1935 with the concept of "effective calculability" based on his λ-calculus, and by Alan Turing the next year with his concept of Turing machines. Turing immediately recognized that these are equivalent models of computation.

A negative answer to the Entscheidungsproblem was then given by Alonzo Church in 1935–36 (Church's theorem) and independently shortly thereafter by Alan Turing in 1936 (Turing's proof). Church proved that there is no computable function which decides, for two given λ-calculus expressions, whether they are equivalent or not. He relied heavily on earlier work by Stephen Kleene. Turing reduced the question of the existence of an 'algorithm' or 'general method' able to solve the Entscheidungsproblem to the question of the existence of a 'general method' which decides whether any given Turing machine halts or not (the halting problem). If 'algorithm' is understood as meaning a method that can be represented as a Turing machine, and with the answer to the latter question negative (in general), the question about the existence of an algorithm for the Entscheidungsproblem also must be negative (in general). In his 1936 paper, Turing says: "Corresponding to each computing machine 'it' we construct a formula 'Un(it)' and we show that, if there is a general method for determining whether 'Un(it)' is provable, then there is a general method for determining whether 'it' ever prints 0".

The work of both Church and Turing was heavily influenced by Kurt Gödel's earlier work on his incompleteness theorem, especially by the method of assigning numbers (a Gödel numbering) to logical formulas in order to reduce logic to arithmetic.

The Entscheidungsproblem is related to Hilbert's tenth problem, which asks for an algorithm to decide whether Diophantine equations have a solution. The non-existence of such an algorithm, established by the work of Yuri Matiyasevich, Julia Robinson, Martin Davis, and Hilary Putnam, with the final piece of the proof in 1970, also implies a negative answer to the Entscheidungsproblem.

Generalizations

Using the deduction theorem, the Entscheidungsproblem encompasses the more general problem of deciding whether a given first-order sentence is entailed by a given finite set of sentences, but validity in first-order theories with infinitely many axioms cannot be directly reduced to the Entscheidungsproblem. Such more general decision problems are, however, of practical interest. Some first-order theories are algorithmically decidable; examples of this include Presburger arithmetic, real closed fields, and static type systems of many programming languages. On the other hand, the first-order theory of the natural numbers with addition and multiplication expressed by Peano's axioms cannot be decided with an algorithm.

Fragments

By default, the citations in the section are from Pratt-Hartmann (2023). [7]

The classical Entscheidungsproblem asks that, given a first-order formula, whether it is true in all models. The finitary problem asks whether it is true in all finite models. Trakhtenbrot's theorem shows that this is also undecidable. [8] [7]

Some notations: means the problem of deciding whether there exists a model for a set of logical formulas . is the same problem, but for finite models. The -problem for a logical fragment is called decidable if there exists a program that can decide, for each finite set of logical formulas in the fragment, whether or not.

There is a hierarchy of decidabilities. On the top are the undecidable problems. Below it are the decidable problems. Furthermore, the decidable problems can be divided into a complexity hierarchy.

Aristotelean and relational

Aristotelean logic considers 4 kinds of sentences: "All p are q", "All p are not q", "Some p is q", "Some p is not q". We can formalize these kinds of sentences as a fragment of first-order logic:

where are atomic predicates, and . Given a finite set of Aristotelean logic formulas, it is NLOGSPACE-complete to decide its . It is also NLOGSPACE-complete to decide for a slight extension (Theorem 2.7):

Relational logic extends Aristotelean logic by allowing a relational predicate. For example, "Everybody loves somebody" can be written as . Generally, we have 8 kinds of sentences:

It is NLOGSPACE-complete to decide its (Theorem 2.15). Relational logic can be extended to 32 kinds of sentences by allowing , but this extension is EXPTIME-complete (Theorem 2.24).

Arity

The first-order logic fragment where the only variable names are is NEXPTIME-complete (Theorem 3.18). With , it is RE-complete to decide its , and co-RE-complete to decide (Theorem 3.15), thus undecidable.

The monadic predicate calculus is the fragment where each formula contains only 1-ary predicates and no function symbols. Its is NEXPTIME-complete (Theorem 3.22).

Quantifier prefix

Any first-order formula has a prenex normal form. For each possible quantifier prefix to the prenex normal form, we have a fragment of first-order logic. For example, the Bernays–Schönfinkel class, , is the class of first-order formulas with quantifier prefix , equality symbols, and no function symbols.

For example, Turing's 1936 paper (p. 263) observed that since the halting problem for each Turing machine is equivalent to a first-order logical formula of form , the problem is undecidable.

The precise boundaries are known, sharply:

Börger et al. (2001) [11] describes the level of computational complexity for every possible fragment with every possible combination of quantifier prefix, functional arity, predicate arity, and equality/no-equality.

Practical decision procedures

Having practical decision procedures for classes of logical formulas is of considerable interest for program verification and circuit verification. Pure Boolean logical formulas are usually decided using SAT-solving techniques based on the DPLL algorithm.

For more general decision problems of first-order theories, conjunctive formulas over linear real or rational arithmetic can be decided using the simplex algorithm, formulas in linear integer arithmetic (Presburger arithmetic) can be decided using Cooper's algorithm or William Pugh's Omega test. Formulas with negations, conjunctions and disjunctions combine the difficulties of satisfiability testing with that of decision of conjunctions; they are generally decided nowadays using SMT-solving techniques, which combine SAT-solving with decision procedures for conjunctions and propagation techniques. Real polynomial arithmetic, also known as the theory of real closed fields, is decidable; this is the Tarski–Seidenberg theorem, which has been implemented in computers by using the cylindrical algebraic decomposition.

See also

Notes

  1. David Hilbert and Wilhelm Ackermann. Grundzüge der Theoretischen Logik. Springer, Berlin, Germany, 1928. English translation: David Hilbert and Wilhelm Ackermann. Principles of Mathematical Logic. AMS Chelsea Publishing, Providence, Rhode Island, USA, 1950
  2. Church's paper was presented to the American Mathematical Society on 19 April 1935 and published on 15 April 1936. Turing, who had made substantial progress in writing up his own results, was disappointed to learn of Church's proof upon its publication (see correspondence between Max Newman and Church in Alonzo Church papers). Turing quickly completed his paper and rushed it to publication; it was received by the Proceedings of the London Mathematical Society on 28 May 1936, read on 12 November 1936, and published in series 2, volume 42 (1936–7); it appeared in two sections: in Part 3 (pages 230–240), issued on 30 Nov 1936 and in Part 4 (pages 241–265), issued on 23 Dec 1936; Turing added corrections in volume 43 (1937), pp. 544–546. See the footnote at the end of Soare: 1996.
  3. Davis 2001 , pp. 3–20
  4. Hodges 1983 , p. 91
  5. Kline, G. L.; Anovskaa, S. A. (1951), "Review of Foundations of mathematics and mathematical logic by S. A. Yanovskaya", Journal of Symbolic Logic , 16 (1): 46–48, doi:10.2307/2268665, JSTOR   2268665, S2CID   119004002
  6. Hodges 1983 , p. 92, quoting from Hilbert
  7. 1 2 Pratt-Hartmann, Ian (30 March 2023). Fragments of First-Order Logic. Oxford University Press. ISBN   978-0-19-196006-2.
  8. B. Trakhtenbrot. The impossibility of an algorithm for the decision problem for finite models. Doklady Akademii Nauk, 70:572–596, 1950. English translation: AMS Translations Series 2, vol. 33 (1963), pp. 1–6.
  9. Bernays, Paul; Schönfinkel, Moses (December 1928). "Zum Entscheidungsproblem der mathematischen Logik". Mathematische Annalen (in German). 99 (1): 342–372. doi:10.1007/BF01459101. ISSN   0025-5831. S2CID   122312654.
  10. Ackermann, Wilhelm (1 December 1928). "Über die Erfüllbarkeit gewisser Zählausdrücke". Mathematische Annalen (in German). 100 (1): 638–649. doi:10.1007/BF01448869. ISSN   1432-1807. S2CID   119646624.
  11. Börger, Egon; Grädel, Erich; Gurevič, Jurij; Gurevich, Yuri (2001). The classical decision problem. Universitext (2. printing of the 1. ed.). Berlin: Springer. ISBN   978-3-540-42324-9.

Related Research Articles

In computability theory, the Church–Turing thesis is a thesis about the nature of computable functions. It states that a function on the natural numbers can be calculated by an effective method if and only if it is computable by a Turing machine. The thesis is named after American mathematician Alonzo Church and the British mathematician Alan Turing. Before the precise definition of computable function, mathematicians often used the informal term effectively calculable to describe functions that are computable by paper-and-pencil methods. In the 1930s, several independent attempts were made to formalize the notion of computability:

First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists" is a quantifier, while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.

In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete.

In computability theory, Rice's theorem states that all non-trivial semantic properties of programs are undecidable. A semantic property is one about the program's behavior, unlike a syntactic property. A property is non-trivial if it is neither true for every program, nor false for every program.

<span class="mw-page-title-main">Turing machine</span> Computation model defining an abstract machine

A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer algorithm.

Gödel's incompleteness theorems are two theorems of mathematical logic that are concerned with the limits of provability in formal axiomatic theories. These results, published by Kurt Gödel in 1931, are important both in mathematical logic and in the philosophy of mathematics. The theorems are widely, but not universally, interpreted as showing that Hilbert's program to find a complete and consistent set of axioms for all mathematics is impossible.

Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation, can decide whether the equation has a solution with all unknowns taking integer values.

<span class="mw-page-title-main">Metamathematics</span> Study of mathematics itself

Metamathematics is the study of mathematics itself using mathematical methods. This study produces metatheories, which are mathematical theories about other mathematical theories. Emphasis on metamathematics owes itself to David Hilbert's attempt to secure the foundations of mathematics in the early part of the 20th century. Metamathematics provides "a rigorous mathematical technique for investigating a great variety of foundation problems for mathematics and logic". An important feature of metamathematics is its emphasis on differentiating between reasoning from inside a system and from outside a system. An informal illustration of this is categorizing the proposition "2+2=4" as belonging to mathematics while categorizing the proposition "'2+2=4' is valid" as belonging to metamathematics.

In modal logic, Sahlqvist formulas are a certain kind of modal formula with remarkable properties. The Sahlqvist correspondence theorem states that every Sahlqvist formula is canonical, and corresponds to a first-order definable class of Kripke frames.

In mathematical logic, Heyting arithmetic is an axiomatization of arithmetic in accordance with the philosophy of intuitionism. It is named after Arend Heyting, who first proposed it.

In mathematics, a proof of impossibility is a proof that demonstrates that a particular problem cannot be solved as described in the claim, or that a particular set of problems cannot be solved in general. Such a case is also known as a negative proof, proof of an impossibility theorem, or negative result. Proofs of impossibility often are the resolutions to decades or centuries of work attempting to find a solution, eventually proving that there is no solution. Proving that something is impossible is usually much harder than the opposite task, as it is often necessary to develop a proof that works in general, rather than to just show a particular example. Impossibility theorems are usually expressible as negative existential propositions or universal propositions in logic.

Turing's proof is a proof by Alan Turing, first published in November 1936 with the title "On Computable Numbers, with an Application to the Entscheidungsproblem". It was the second proof of the negation of Hilbert's Entscheidungsproblem; that is, the conjecture that some purely mathematical yes–no questions can never be answered by computation; more technically, that some decision problems are "undecidable" in the sense that there is no single algorithm that infallibly gives a correct "yes" or "no" answer to each instance of the problem. In Turing's own words: "what I shall prove is quite different from the well-known results of Gödel ... I shall now show that there is no general method which tells whether a given formula U is provable in K [Principia Mathematica]".

In logic, finite model theory, and computability theory, Trakhtenbrot's theorem states that the problem of validity in first-order logic on the class of all finite models is undecidable. In fact, the class of valid sentences over finite models is not recursively enumerable.

In logic, especially mathematical logic, a Hilbert system, sometimes called Hilbert calculus, Hilbert-style deductive system or Hilbert–Ackermann system, is a type of system of formal deduction attributed to Gottlob Frege and David Hilbert. These deductive systems are most often studied for first-order logic, but are of interest for other logics as well.

The history of the Church–Turing thesis ("thesis") involves the history of the development of the study of the nature of functions whose values are effectively calculable; or, in more modern terms, functions whose values are algorithmically computable. It is an important topic in modern mathematical theory and computer science, particularly associated with the work of Alonzo Church and Alan Turing.

In computability theory and computational complexity theory, an undecidable problem is a decision problem for which it is proved to be impossible to construct an algorithm that always leads to a correct yes-or-no answer. The halting problem is an example: it can be proven that there is no algorithm that correctly determines whether an arbitrary program eventually halts when run.

In computational complexity theory, the language TQBF is a formal language consisting of the true quantified Boolean formulas. A (fully) quantified Boolean formula is a formula in quantified propositional logic where every variable is quantified, using either existential or universal quantifiers, at the beginning of the sentence. Such a formula is equivalent to either true or false. If such a formula evaluates to true, then that formula is in the language TQBF. It is also known as QSAT.

In computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever. The halting problem is undecidable, meaning that no general algorithm exists that solves the halting problem for all possible program–input pairs.

In mathematical logic, a formula is satisfiable if it is true under some assignment of values to its variables. For example, the formula is satisfiable because it is true when and , while the formula is not satisfiable over the integers. The dual concept to satisfiability is validity; a formula is valid if every assignment of values to its variables makes the formula true. For example, is valid over the integers, but is not.

In the mathematical fields of graph theory and finite model theory, the logic of graphs deals with formal specifications of graph properties using sentences of mathematical logic. There are several variations in the types of logical operation that can be used in these sentences. The first-order logic of graphs concerns sentences in which the variables and predicates concern individual vertices and edges of a graph, while monadic second-order graph logic allows quantification over sets of vertices or edges. Logics based on least fixed point operators allow more general predicates over tuples of vertices, but these predicates can only be constructed through fixed-point operators, restricting their power.

References