Triangle of opposition

Last updated

In the system of Aristotelian logic, the triangle of opposition is a diagram[ which? ] representing the different ways in which each of the three propositions of the system is logically related ('opposed') to each of the others. The system is also useful in the analysis of syllogistic logic, serving to identify the allowed logical conversions from one type to another.

Contents

In the 19th and 20th centuries, other triangles were proposed, including Nicolai A. Vasiliev's triangle, [1] the Jespersenian Triangle, Ginzberg’s triangle of contraries and Sir William Hamilton’s subcontraries. [2]

See also

Related Research Articles

The propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives representing the truth functions of conjunction, disjunction, implication, biconditional, and negation. Some sources include other connectives, as in the table below.

<span class="mw-page-title-main">Syllogism</span> Type of logical argument that applies deductive reasoning

A syllogism is a kind of logical argument that applies deductive reasoning to arrive at a conclusion based on two propositions that are asserted or assumed to be true.

In logic and proof theory, natural deduction is a kind of proof calculus in which logical reasoning is expressed by inference rules closely related to the "natural" way of reasoning. This contrasts with Hilbert-style systems, which instead use axioms as much as possible to express the logical laws of deductive reasoning.

Classical logic or Frege–Russell logic is the intensively studied and most widely used class of deductive logic. Classical logic has had much influence on analytic philosophy.

The history of logic deals with the study of the development of the science of valid inference (logic). Formal logics developed in ancient times in India, China, and Greece. Greek methods, particularly Aristotelian logic as found in the Organon, found wide application and acceptance in Western science and mathematics for millennia. The Stoics, especially Chrysippus, began the development of predicate logic.

A proposition is a central concept in the philosophy of language, semantics, logic, and related fields, often characterized as the primary bearer of truth or falsity. Propositions are also often characterized as being the kind of thing that declarative sentences denote. For instance the sentence "The sky is blue" denotes the proposition that the sky is blue. However, crucially, propositions are not themselves linguistic expressions. For instance, the English sentence "Snow is white" denotes the same proposition as the German sentence "Schnee ist weiß" even though the two sentences are not the same. Similarly, propositions can also be characterized as the objects of belief and other propositional attitudes. For instance if one believes that the sky is blue, what one believes is the proposition that the sky is blue. A proposition can also be thought of as a kind of idea: Collins Dictionary has a definition for proposition as "a statement or an idea that people can consider or discuss whether it is true."

<span class="mw-page-title-main">Square of opposition</span> Type of logic diagram

In term logic, the square of opposition is a diagram representing the relations between the four basic categorical propositions. The origin of the square can be traced back to Aristotle's tractate On Interpretation and its distinction between two oppositions: contradiction and contrariety. However, Aristotle did not draw any diagram; this was done several centuries later by Apuleius and Boethius.

Understood in a narrow sense, philosophical logic is the area of logic that studies the application of logical methods to philosophical problems, often in the form of extended logical systems like modal logic. Some theorists conceive philosophical logic in a wider sense as the study of the scope and nature of logic in general. In this sense, philosophical logic can be seen as identical to the philosophy of logic, which includes additional topics like how to define logic or a discussion of the fundamental concepts of logic. The current article treats philosophical logic in the narrow sense, in which it forms one field of inquiry within the philosophy of logic.

In logic and formal semantics, term logic, also known as traditional logic, syllogistic logic or Aristotelian logic, is a loose name for an approach to formal logic that began with Aristotle and was developed further in ancient history mostly by his followers, the Peripatetics. It was revived after the third century CE by Porphyry's Isagoge.

Logical possibility refers to a logical proposition that cannot be disproved, using the axioms and rules of a given system of logic. The logical possibility of a proposition will depend upon the system of logic being considered, rather than on the violation of any single rule. Some systems of logic restrict inferences from inconsistent propositions or even allow for true contradictions. Other logical systems have more than two truth-values instead of a binary of such values. Some assume the system in question is classical propositional logic. Similarly, the criterion for logical possibility is often based on whether or not a proposition is contradictory and as such, is often thought of as the broadest type of possibility.

<i>Organon</i> Standard collection of Aristotles six works on logic

The Organon is the standard collection of Aristotle's six works on logical analysis and dialectic. The name Organon was given by Aristotle's followers, the Peripatetics, who maintained against the Stoics that Logic was "an instrument" of Philosophy.

Early Islamic law placed importance on formulating standards of argument, which gave rise to a "novel approach to logic" in Kalam . However, with the rise of the Mu'tazili philosophers, who highly valued Aristotle's Organon, this approach was displaced by the older ideas from Hellenistic philosophy. The works of al-Farabi, Avicenna, al-Ghazali and other Muslim logicians who often criticized and corrected Aristotelian logic and introduced their own forms of logic, also played a central role in the subsequent development of European logic during the Renaissance.

Nicolai Alexandrovich Vasiliev, also Vasil'ev, Vassilieff, Wassilieff, was a Russian logician, philosopher, psychologist, poet. He was a forerunner of paraconsistent and multi-valued logics.

Logic is the formal science of using reason and is considered a branch of both philosophy and mathematics and to a lesser extent computer science. Logic investigates and classifies the structure of statements and arguments, both through the study of formal systems of inference and the study of arguments in natural language. The scope of logic can therefore be very large, ranging from core topics such as the study of fallacies and paradoxes, to specialized analyses of reasoning such as probability, correct reasoning, and arguments involving causality. One of the aims of logic is to identify the correct and incorrect inferences. Logicians study the criteria for the evaluation of arguments.

An interpretation is an assignment of meaning to the symbols of a formal language. Many formal languages used in mathematics, logic, and theoretical computer science are defined in solely syntactic terms, and as such do not have any meaning until they are given some interpretation. The general study of interpretations of formal languages is called formal semantics.

Philosophy of logic is the area of philosophy that studies the scope and nature of logic. It investigates the philosophical problems raised by logic, such as the presuppositions often implicitly at work in theories of logic and in their application. This involves questions about how logic is to be defined and how different logical systems are connected to each other. It includes the study of the nature of the fundamental concepts used by logic and the relation of logic to other disciplines. According to a common characterisation, philosophical logic is the part of the philosophy of logic that studies the application of logical methods to philosophical problems, often in the form of extended logical systems like modal logic. But other theorists draw the distinction between the philosophy of logic and philosophical logic differently or not at all. Metalogic is closely related to the philosophy of logic as the discipline investigating the properties of formal logical systems, like consistency and completeness.

In the system of Aristotelian logic, the logical cube is a diagram representing the different ways in which each of the eight propositions of the system is logically related ('opposed') to each of the others. The system is also useful in the analysis of syllogistic logic, serving to identify the allowed logical conversions from one type to another.

<span class="mw-page-title-main">Logic</span> Study of correct reasoning

Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. Informal logic examines arguments expressed in natural language whereas formal logic uses formal language. When used as a countable noun, the term "a logic" refers to a specific logical formal system that articulates a proof system. Logic plays a central role in many fields, such as philosophy, mathematics, computer science, and linguistics.

This is a glossary of logic. Logic is the study of the principles of valid reasoning and argumentation.

References

  1. Bazhanov, Valentin (January 31, 2008). "Non-Classical Stems from Classical: N. A. Vasiliev's Approach to Logic and his Reassessment of the Square of Opposition (Book review)". Philosophy Documentation Center. Retrieved 2024-03-05.
  2. Horn, Laurence (January 31, 2010). "Histoire d'*O: Lexical Pragmatics and the Geometry of Opposition" (PDF). Yale University. Retrieved 2024-03-05.

Philosophy Documentation Center website A Triangle of Opposites for Types of Propositions in Aristotelian Logic, by Paul Jacoby, published in The New Scholasticism (Volume 24, Issue 1, January 1950, pages 32-56)