Syncategorematic term

Last updated

In logic and linguistics, an expression is syncategorematic if it lacks a denotation but can nonetheless affect the denotation of a larger expression which contains it. Syncategorematic expressions are contrasted with categorematic expressions, which have their own denotations.

Contents

For example, consider the following rules for interpreting the plus sign. The first rule is syncategorematic since it gives an interpretation for expressions containing the plus sign but does not give an interpretation for the plus sign itself. On the other hand, the second rule does give an interpretation for the plus sign itself, so it is categorematic.

  1. Syncategorematic: For any numeral symbols "" and "", the expression "" denotes the sum of the numbers denoted by "" and "".
  2. Categorematic: The plus sign "" denotes the operation of addition.

Syncategorematicity was a topic of research in medieval philosophy since syncategorematic expressions cannot stand for any of Aristotle's categories despite their role in forming propositions. Medieval logicians and grammarians thought that quantifiers and logical connectives were necessarily syncategorematic. Contemporary research in formal semantics has shown that categorematic definitions can be given for these expressions in which they denote generalized quantifiers, but it remains an open question whether syncategorematicity plays any role in natural language. Both categorematic and syncategorematic definitions are commonly used in contemporary logic and mathematics. [1] [2] [3] [4]

Ancient and medieval conception

The distinction between categorematic and syncategorematic terms was established in ancient Greek grammar. Words that designate self-sufficient entities (i.e., nouns or adjectives) were called categorematic, and those that do not stand by themselves were dubbed syncategorematic, (i.e., prepositions, logical connectives, etc.). Priscian in his Institutiones grammaticae [5] translates the word as consignificantia. Scholastics retained the difference, which became a dissertable topic after the 13th century revival of logic. William of Sherwood, a representative of terminism, wrote a treatise called Syncategoremata. Later his pupil, Peter of Spain, produced a similar work entitled Syncategoreumata. [6]

Modern conception

In its modern conception, syncategorematicity is seen as a formal feature, determined by the way an expression is defined or introduced in the language. In the standard semantics for propositional logic, the logical connectives are treated syncategorematically. Let us take the connective for instance, its semantic rule is:

iff

Thus, its meaning is defined when it occurs in combination with two formulas and . It has no meaning when taken in isolation, i.e. is not defined.

One could however give an equivalent categorematic interpretation using λ-abstraction: , which expects a pair of Boolean-valued arguments, i.e., arguments that are either TRUE or FALSE, defined as and respectively. This is an expression of type . Its meaning is thus a binary function from pairs of entities of type truth-value to an entity of type truth-value. Under this definition it would be non-syncategorematic, or categorematic. Note that while this definition would formally define the function, it requires the use of -abstraction, in which case the itself is introduced syncategorematically, thus simply moving the issue up another level of abstraction.[ citation needed ]

See also

Notes

  1. MacFarlane, John (2017). "Logical constants". In Zalta, Edward N. (ed.). The Stanford Encyclopedia of Philosophy.
  2. Heim, Irene; Kratzer, Angelika (1998). Semantics in Generative Grammar. Oxford: Wiley Blackwell. p. 98.
  3. Gamut, L. T. F. (1991). Logic, Language, and Meaning, Volume 2: Intensional Logic and Logical Grammar. University of Chicago Press. p. 101.
  4. Grant, p. 120.
  5. Priscian, Institutiones grammaticae, II, 15
  6. Peter of Spain, Stanford Encyclopedia of Philosophy online

Related Research Articles

Logical disjunction Logical connective OR

In logic, disjunction is a logical connective typically notated whose meaning either refines or corresponds to that of natural language expressions such as "or". In classical logic, it is given a truth functional semantics on which is true unless both and are false. Because this semantics allows a disjunctive formula to be true when both of its disjuncts are true, it is an inclusive interpretation of disjunction, in contrast with exclusive disjunction. Classical proof theoretical treatments are often given in terms of rules such as disjunction introduction and disjunction elimination. Disjunction has also been given numerous non-classical treatments, motivated by problems including Aristotle's sea battle argument, Heisenberg's uncertainty principle, as well the numerous mismatches between classical disjunction and its nearest equivalents in natural language.

First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists" is a quantifier, while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.

Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions.

Lambda calculus is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. It is a universal model of computation that can be used to simulate any Turing machine. It was introduced by the mathematician Alonzo Church in the 1930s as part of his research into the foundations of mathematics.

In mathematical logic, model theory is the study of the relationship between formal theories, and their models. The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory.

Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not include the law of the excluded middle and double negation elimination, which are fundamental inference rules in classical logic.

Unitary group Group of unitary matrices

In mathematics, the unitary group of degree n, denoted U(n), is the group of n × n unitary matrices, with the group operation of matrix multiplication. The unitary group is a subgroup of the general linear group GL(n, C). Hyperorthogonal group is an archaic name for the unitary group, especially over finite fields. For the group of unitary matrices with determinant 1, see Special unitary group.

In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space V with inner product is a linear map A that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. In this article, we consider generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.

In mathematical logic, propositional logic and predicate logic, a well-formed formula, abbreviated WFF or wff, often simply formula, is a finite sequence of symbols from a given alphabet that is part of a formal language. A formal language can be identified with the set of formulas in the language.

A formula of the predicate calculus is in prenex normal form (PNF) if it is rewritten as a string of quantifiers and bound variables, called the prefix, followed by a quantifier-free part, called the matrix. Together with the normal forms in propositional logic, it provides a canonical normal form useful in automated theorem proving.

In formal semantics and philosophy of language, a definite description is a denoting phrase in the form of "the X" where X is a noun-phrase or a singular common noun. The definite description is proper if X applies to a unique individual or object. For example: "the first person in space" and "the 42nd President of the United States of America", are proper. The definite descriptions "the person in space" and "the Senator from Ohio" are improper because the noun phrase X applies to more than one thing, and the definite descriptions "the first man on Mars" and "the Senator from some Country" are improper because X applies to nothing. Improper descriptions raise some difficult questions about the law of excluded middle, denotation, modality, and mental content.

Independence-friendly logic is an extension of classical first-order logic (FOL) by means of slashed quantifiers of the form and , where is a finite set of variables. The intended reading of is "there is a which is functionally independent from the variables in ". IF logic allows one to express more general patterns of dependence between variables than those which are implicit in first-order logic. This greater level of generality leads to an actual increase in expressive power; the set of IF sentences can characterize the same classes of structures as existential second-order logic. For example, it can express branching quantifier sentences, such as the formula which expresses infinity in the empty signature; this cannot be done in FOL. Therefore, first-order logic cannot, in general, express this pattern of dependency, in which depends only on and , and depends only on and . IF logic is more general than branching quantifiers, for example in that it can express dependencies that are not transitive, such as in the quantifier prefix , which expresses that depends on , and depends on , but does not depend on .

In mathematical logic, a Boolean-valued model is a generalization of the ordinary Tarskian notion of structure from model theory. In a Boolean-valued model, the truth values of propositions are not limited to "true" and "false", but instead take values in some fixed complete Boolean algebra.

The term "information algebra" refers to mathematical techniques of information processing. Classical information theory goes back to Claude Shannon. It is a theory of information transmission, looking at communication and storage. However, it has not been considered so far that information comes from different sources and that it is therefore usually combined. It has furthermore been neglected in classical information theory that one wants to extract those parts out of a piece of information that are relevant to specific questions.

In theoretical computer science, the modal μ-calculus is an extension of propositional modal logic by adding the least fixed point operator μ and the greatest fixed point operator ν, thus a fixed-point logic.

An interpretation is an assignment of meaning to the symbols of a formal language. Many formal languages used in mathematics, logic, and theoretical computer science are defined in solely syntactic terms, and as such do not have any meaning until they are given some interpretation. The general study of interpretations of formal languages is called formal semantics.

Dynamic semantics is a framework in logic and natural language semantics that treats the meaning of a sentence as its potential to update a context. In static semantics, knowing the meaning of a sentence amounts to knowing when it is true; in dynamic semantics, knowing the meaning of a sentence means knowing "the change it brings about in the information state of anyone who accepts the news conveyed by it." In dynamic semantics, sentences are mapped to functions called context change potentials, which take an input context and return an output context. Dynamic semantics was originally developed by Irene Heim and Hans Kamp in 1981 to model anaphora, but has since been applied widely to phenomena including presupposition, plurals, questions, discourse relations, and modality.

Dependence logic is a logical formalism, created by Jouko Väänänen, which adds dependence atoms to the language of first-order logic. A dependence atom is an expression of the form , where are terms, and corresponds to the statement that the value of is functionally dependent on the values of .

Deductive lambda calculus considers what happens when lambda terms are regarded as mathematical expressions. One interpretation of the untyped lambda calculus is as a programming language where evaluation proceeds by performing reductions on an expression until it is in normal form. In this interpretation, if the expression never reduces to normal form then the program never terminates, and the value is undefined. Considered as a mathematical deductive system, each reduction would not alter the value of the expression. The expression would equal the reduction of the expression.

In mathematics, a filter on a set informally gives a notion of which subsets are "large". Filter quantifiers are a type of logical quantifier which, informally, say whether or not a statement is true for "most" elements of . Such quantifiers are often used in combinatorics, model theory, and in other fields of mathematical logic where (ultra)filters are used.

References