In formal semantics, a generalized quantifier (GQ) is an expression that denotes a set of sets. This is the standard semantics assigned to quantified noun phrases. For example, the generalized quantifier every boy denotes the set of sets of which every boy is a member:
This treatment of quantifiers has been essential in achieving a compositional semantics for sentences containing quantifiers. [1] [2]
A version of type theory is often used to make the semantics of different kinds of expressions explicit. The standard construction defines the set of types recursively as follows:
Given this definition, we have the simple types e and t, but also a countable infinity of complex types, some of which include:
We can now assign types to the words in our sentence above (Every boy sleeps) as follows.
and so we can see that the generalized quantifier in our example is of type
Thus, every denotes a function from a set to a function from a set to a truth value. Put differently, it denotes a function from a set to a set of sets. It is that function which for any two sets A,B, every(A)(B)= 1 if and only if .
A useful way to write complex functions is the lambda calculus. For example, one can write the meaning of sleeps as the following lambda expression, which is a function from an individual x to the proposition that x sleeps.
Such lambda terms are functions whose domain is what precedes the period, and whose range are the type of thing that follows the period. If x is a variable that ranges over elements of , then the following lambda term denotes the identity function on individuals:
We can now write the meaning of every with the following lambda term, where X,Y are variables of type :
If we abbreviate the meaning of boy and sleeps as "B" and "S", respectively, we have that the sentence every boy sleeps now means the following:
By β-reduction,
and
The expression every is a determiner. Combined with a noun, it yields a generalized quantifier of type .
A generalized quantifier GQ is said to be monotone increasing (also called upward entailing) if, for every pair of sets X and Y, the following holds:
The GQ every boy is monotone increasing. For example, the set of things that run fast is a subset of the set of things that run. Therefore, the first sentence below entails the second:
A GQ is said to be monotone decreasing (also called downward entailing) if, for every pair of sets X and Y, the following holds:
An example of a monotone decreasing GQ is no boy. For this GQ we have that the first sentence below entails the second.
The lambda term for the determiner no is the following. It says that the two sets have an empty intersection.
Monotone decreasing GQs are among the expressions that can license a negative polarity item, such as any. Monotone increasing GQs do not license negative polarity items.
A GQ is said to be non-monotone if it is neither monotone increasing nor monotone decreasing. An example of such a GQ is exactly three boys. Neither of the following sentences entails the other.
The first sentence does not entail the second. The fact that the number of students that ran is exactly three does not entail that each of these students ran fast, so the number of students that did that can be smaller than 3. Conversely, the second sentence does not entail the first. The sentence exactly three students ran fast can be true, even though the number of students who merely ran (i.e. not so fast) is greater than 3.
The lambda term for the (complex) determiner exactly three is the following. It says that the cardinality of the intersection between the two sets equals 3.
A determiner D is said to be conservative if the following equivalence holds:
For example, the following two sentences are equivalent.
It has been proposed that all determiners—in every natural language—are conservative. [2] The expression only is not conservative. The following two sentences are not equivalent. But it is, in fact, not common to analyze only as a determiner. Rather, it is standardly treated as a focus-sensitive adverb.
In probability theory and statistics, the negative binomial distribution is a discrete probability distribution that models the number of failures in a sequence of independent and identically distributed Bernoulli trials before a specified (non-random) number of successes occurs. For example, we can define rolling a 6 on some dice as a success, and rolling any other number as a failure, and ask how many failure rolls will occur before we see the third success. In such a case, the probability distribution of the number of failures that appear will be a negative binomial distribution.
Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.
In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space V with inner product is a linear map A that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A∗. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. This article deals with applying generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.
In mathematics, specifically functional analysis, a trace-class operator is a linear operator for which a trace may be defined, such that the trace is a finite number independent of the choice of basis used to compute the trace. This trace of trace-class operators generalizes the trace of matrices studied in linear algebra. All trace-class operators are compact operators.
In mathematics as well as physics, a linear operator acting on an inner product space is called positive-semidefinite if, for every , and , where is the domain of . Positive-semidefinite operators are denoted as . The operator is said to be positive-definite, and written , if for all .
In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operators in a variety of mathematical spaces. It is a result of studies of linear algebra and the solutions of systems of linear equations and their generalizations. The theory is connected to that of analytic functions because the spectral properties of an operator are related to analytic functions of the spectral parameter.
In functional analysis, a branch of mathematics, a compact operator is a linear operator , where are normed vector spaces, with the property that maps bounded subsets of to relatively compact subsets of . Such an operator is necessarily a bounded operator, and so continuous. Some authors require that are Banach, but the definition can be extended to more general spaces.
In formal semantics and philosophy of language, a definite description is a denoting phrase in the form of "the X" where X is a noun-phrase or a singular common noun. The definite description is proper if X applies to a unique individual or object. For example: "the first person in space" and "the 42nd President of the United States of America", are proper. The definite descriptions "the person in space" and "the Senator from Ohio" are improper because the noun phrase X applies to more than one thing, and the definite descriptions "the first man on Mars" and "the Senator from Washington D.C." are improper because X applies to nothing. Improper descriptions raise some difficult questions about the law of excluded middle, denotation, modality, and mental content.
In mathematics, specifically in operator theory, each linear operator on an inner product space defines a Hermitian adjoint operator on that space according to the rule
In functional analysis, a branch of mathematics, the Borel functional calculus is a functional calculus, which has particularly broad scope. Thus for instance if T is an operator, applying the squaring function s → s2 to T yields the operator T2. Using the functional calculus for larger classes of functions, we can for example define rigorously the "square root" of the (negative) Laplacian operator −Δ or the exponential
In mathematics and mathematical optimization, the convex conjugate of a function is a generalization of the Legendre transformation which applies to non-convex functions. It is also known as Legendre–Fenchel transformation, Fenchel transformation, or Fenchel conjugate. It allows in particular for a far reaching generalization of Lagrangian duality.
In the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments. By contrast, the study of general operators on infinite-dimensional spaces often requires a genuinely different approach.
In computability theory, hyperarithmetic theory is a generalization of Turing computability. It has close connections with definability in second-order arithmetic and with weak systems of set theory such as Kripke–Platek set theory. It is an important tool in effective descriptive set theory.
In logic and linguistics, an expression is syncategorematic if it lacks a denotation but can nonetheless affect the denotation of a larger expression which contains it. Syncategorematic expressions are contrasted with categorematic expressions, which have their own denotations.
In mathematics, Hilbert spaces allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.
In mathematics, the Pettis integral or Gelfand–Pettis integral, named after Israel M. Gelfand and Billy James Pettis, extends the definition of the Lebesgue integral to vector-valued functions on a measure space, by exploiting duality. The integral was introduced by Gelfand for the case when the measure space is an interval with Lebesgue measure. The integral is also called the weak integral in contrast to the Bochner integral, which is the strong integral.
In mathematical logic, a term denotes a mathematical object while a formula denotes a mathematical fact. In particular, terms appear as components of a formula. This is analogous to natural language, where a noun phrase refers to an object and a whole sentence refers to a fact.
The Bennett acceptance ratio method (BAR) is an algorithm for estimating the difference in free energy between two systems . It was suggested by Charles H. Bennett in 1976.
Dependence logic is a logical formalism, created by Jouko Väänänen, which adds dependence atoms to the language of first-order logic. A dependence atom is an expression of the form , where are terms, and corresponds to the statement that the value of is functionally dependent on the values of .
Computable topology is a discipline in mathematics that studies the topological and algebraic structure of computation. Computable topology is not to be confused with algorithmic or computational topology, which studies the application of computation to topology.