Semantics | ||||||||
---|---|---|---|---|---|---|---|---|
| ||||||||
Computing | ||||||||
| ||||||||
Computational semantics is the study of how to automate the process of constructing and reasoning with meaning representations of natural language expressions. [1] It consequently plays an important role in natural-language processing and computational linguistics.
Some traditional topics of interest are: construction of meaning representations, semantic underspecification, anaphora resolution, [2] presupposition projection, and quantifier scope resolution. Methods employed usually draw from formal semantics or statistical semantics. Computational semantics has points of contact with the areas of lexical semantics (word-sense disambiguation and semantic role labeling), discourse semantics, knowledge representation and automated reasoning (in particular, automated theorem proving). Since 1999 there has been an ACL special interest group on computational semantics, SIGSEM.
Computational linguistics is an interdisciplinary field concerned with the computational modelling of natural language, as well as the study of appropriate computational approaches to linguistic questions. In general, computational linguistics draws upon linguistics, computer science, artificial intelligence, mathematics, logic, philosophy, cognitive science, cognitive psychology, psycholinguistics, anthropology and neuroscience, among others.
Knowledge representation and reasoning is the field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can use to solve complex tasks such as diagnosing a medical condition or having a dialog in a natural language. Knowledge representation incorporates findings from psychology about how humans solve problems and represent knowledge in order to design formalisms that will make complex systems easier to design and build. Knowledge representation and reasoning also incorporates findings from logic to automate various kinds of reasoning, such as the application of rules or the relations of sets and subsets.
Natural language processing (NLP) is an interdisciplinary subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language, in particular how to program computers to process and analyze large amounts of natural language data. The goal is a computer capable of "understanding" the contents of documents, including the contextual nuances of the language within them. The technology can then accurately extract information and insights contained in the documents as well as categorize and organize the documents themselves.
Semantics is the study of reference, meaning, or truth. The term can be used to refer to subfields of several distinct disciplines, including philosophy, linguistics and computer science.
Natural-language understanding (NLU) or natural-language interpretation (NLI) is a subtopic of natural-language processing in artificial intelligence that deals with machine reading comprehension. Natural-language understanding is considered an AI-hard problem.
Head-driven phrase structure grammar (HPSG) is a highly lexicalized, constraint-based grammar developed by Carl Pollard and Ivan Sag. It is a type of phrase structure grammar, as opposed to a dependency grammar, and it is the immediate successor to generalized phrase structure grammar. HPSG draws from other fields such as computer science and uses Ferdinand de Saussure's notion of the sign. It uses a uniform formalism and is organized in a modular way which makes it attractive for natural language processing.
Frame semantics is a theory of linguistic meaning developed by Charles J. Fillmore that extends his earlier case grammar. It relates linguistic semantics to encyclopedic knowledge. The basic idea is that one cannot understand the meaning of a single word without access to all the essential knowledge that relates to that word. For example, one would not be able to understand the word "sell" without knowing anything about the situation of commercial transfer, which also involves, among other things, a seller, a buyer, goods, money, the relation between the money and the goods, the relations between the seller and the goods and the money, the relation between the buyer and the goods and the money and so on. Thus, a word activates, or evokes, a frame of semantic knowledge relating to the specific concept to which it refers.
In formal linguistics, discourse representation theory (DRT) is a framework for exploring meaning under a formal semantics approach. One of the main differences between DRT-style approaches and traditional Montagovian approaches is that DRT includes a level of abstract mental representations within its formalism, which gives it an intrinsic ability to handle meaning across sentence boundaries. DRT was created by Hans Kamp in 1981. A very similar theory was developed independently by Irene Heim in 1982, under the name of File Change Semantics (FCS). Discourse representation theories have been used to implement semantic parsers and natural language understanding systems.
Logic is the formal science of using reason and is considered a branch of both philosophy and mathematics and to a lesser extent computer science. Logic investigates and classifies the structure of statements and arguments, both through the study of formal systems of inference and the study of arguments in natural language. The scope of logic can therefore be very large, ranging from core topics such as the study of fallacies and paradoxes, to specialized analyses of reasoning such as probability, correct reasoning, and arguments involving causality. One of the aims of logic is to identify the correct and incorrect inferences. Logicians study the criteria for the evaluation of arguments.
Yorick Wilks FBCS, a British computer scientist, is emeritus professor of artificial intelligence at the University of Sheffield, visiting professor of artificial intelligence at Gresham College, Former senior research fellow at the Oxford Internet Institute, senior scientist at the Florida Institute for Human and Machine Cognition, and a member of the Epiphany Philosophers.
Donkey sentences are sentences that contain a pronoun with clear meaning but whose syntactical role in the sentence poses challenges to grammarians. Such sentences defy straightforward attempts to generate their formal language equivalents. The difficulty is with understanding how English speakers parse such sentences.
Referring expression generation (REG) is the subtask of natural language generation (NLG) that received most scholarly attention. While NLG is concerned with the conversion of non-linguistic information into natural language, REG focuses only on the creation of referring expressions that identify specific entities called targets.
SemEval is an ongoing series of evaluations of computational semantic analysis systems; it evolved from the Senseval word sense evaluation series. The evaluations are intended to explore the nature of meaning in language. While meaning is intuitive to humans, transferring those intuitions to computational analysis has proved elusive.
Semantic analysis (computational) within applied linguistics and computer science, is a composite of semantic analysis and computational components. Semantic analysis refers to a formal analysis of meaning, and computational refers to approaches that in principle support effective implementation in digital computers.
Formal semantics is the study of grammatical meaning in natural languages using formal tools from logic and theoretical computer science. It is an interdisciplinary field, sometimes regarded as a subfield of both linguistics and philosophy of language. It provides accounts of what linguistic expressions mean and how their meanings are composed from the meanings of their parts. The enterprise of formal semantics can be thought of as that of reverse-engineering the semantic components of natural languages' grammars.
Deep Linguistic Processing with HPSG - INitiative (DELPH-IN) is a collaboration where computational linguists worldwide develop natural language processing tools for deep linguistic processing of human language. The goal of DELPH-IN is to combine linguistic and statistical processing methods in order to computationally understand the meaning of texts and utterances.
The following outline is provided as an overview of and topical guide to natural-language processing:
Temporal annotation is the study of how to automatically add semantic information regarding time to natural language documents. It plays a role in natural language processing and computational linguistics.
In natural language processing (NLP), a text graph is a graph representation of a text item. It is typically created as a preprocessing step to support NLP tasks such as text condensation term disambiguation (topic-based) text summarization, relation extraction and textual entailment.
Semantic parsing is the task of converting a natural language utterance to a logical form: a machine-understandable representation of its meaning. Semantic parsing can thus be understood as extracting the precise meaning of an utterance. Applications of semantic parsing include machine translation, question answering, ontology induction, automated reasoning, and code generation. The phrase was first used in the 1970s by Yorick Wilks as the basis for machine translation programs working with only semantic representations.