Categorical proposition

Last updated

In logic, a categorical proposition, or categorical statement, is a proposition that asserts or denies that all or some of the members of one category (the subject term) are included in another (the predicate term). [1] The study of arguments using categorical statements (i.e., syllogisms) forms an important branch of deductive reasoning that began with the Ancient Greeks.

Contents

The Ancient Greeks such as Aristotle identified four primary distinct types of categorical proposition and gave them standard forms (now often called A, E, I, and O). If, abstractly, the subject category is named S and the predicate category is named P, the four standard forms are:

A large number of sentences may be translated into one of these canonical forms while retaining all or most of the original meaning of the sentence. Greek investigations resulted in the so-called square of opposition, which codifies the logical relations among the different forms; for example, that an A-statement is contradictory to an O-statement; that is to say, for example, if one believes "All apples are red fruits," one cannot simultaneously believe that "Some apples are not red fruits." Thus the relationships of the square of opposition may allow immediate inference, whereby the truth or falsity of one of the forms may follow directly from the truth or falsity of a statement in another form.

Modern understanding of categorical propositions (originating with the mid-19th century work of George Boole) requires one to consider if the subject category may be empty. If so, this is called the hypothetical viewpoint, in opposition to the existential viewpoint which requires the subject category to have at least one member. The existential viewpoint is a stronger stance than the hypothetical and, when it is appropriate to take, it allows one to deduce more results than otherwise could be made. The hypothetical viewpoint, being the weaker view, has the effect of removing some of the relations present in the traditional square of opposition.

Arguments consisting of three categorical propositions — two as premises and one as conclusion — are known as categorical syllogisms and were of paramount importance from the times of ancient Greek logicians through the Middle Ages. Although formal arguments using categorical syllogisms have largely given way to the increased expressive power of modern logic systems like the first-order predicate calculus, they still retain practical value in addition to their historic and pedagogical significance.

Translating statements into standard form

Sentences in natural language may be translated into standard forms. In each row of the following chart, S corresponds to the subject of the example sentence, and P corresponds to the predicate.

NameEnglish SentenceStandard Form
AAll cats have four legs.All S is P.
ENo cats have eight legs.No S is P.
ISome cats are orange.Some S is P.
OSome cats are not black.Some S is not P.

Note that "All S is not P" (e.g., "All cats do not have eight legs") is not classified as an example of the standard forms. This is because the translation to natural language is ambiguous. In common speech, the sentence "All cats do not have eight legs" could be used informally to indicate either (1) "At least some, and perhaps all, cats do not have eight legs" or (2) "No cats have eight legs".

Properties of categorical propositions

Categorical propositions can be categorized into four types on the basis of their "quality" and "quantity", or their "distribution of terms". These four types have long been named A, E, I, and O. This is based on the Latin affirmo (I affirm), referring to the affirmative propositions A and I, and nego (I deny), referring to the negative propositions E and O. [2]

Quantity and quality

Quantity refers to the number of members of the subject class (A class is a collection or group of things designated by a term that is either subject or predicate in a categorical proposition. [3] ) that are used in the proposition. If the proposition refers to all members of the subject class, it is universal. If the proposition does not employ all members of the subject class, it is particular. For instance, an I-proposition ("Some S is P") is particular since it only refers to some of the members of the subject class.

Quality It is described as whether the proposition affirms or denies the inclusion of a subject within the class of the predicate. The two possible qualities are called affirmative and negative. [4] For instance, an A-proposition ("All S is P") is affirmative since it states that the subject is contained within the predicate. On the other hand, an O-proposition ("Some S is not P") is negative since it excludes the subject from the predicate.

The Four Aristotelian Propositions
NameStatementQuantityQuality
AAll S is P.universalaffirmative
ENo S is P.universalnegative
ISome S is P.particularaffirmative
OSome S is not P.particularnegative

An important consideration is the definition of the word some. In logic, some refers to "one or more", which is consistent with "all". Therefore, the statement "Some S is P" does not guarantee that the statement "Some S is not P" is also true.

Distributivity

The two terms (subject and predicate) in a categorical proposition may each be classified as distributed or undistributed. If all members of the term's class are affected by the proposition, that class is distributed; otherwise it is undistributed. Every proposition therefore has one of four possible distribution of terms.

Each of the four canonical forms will be examined in turn regarding its distribution of terms. Although not developed here, Venn diagrams are sometimes helpful when trying to understand the distribution of terms for the four forms.

A form (otherwise known as Universal Affirmative)

An A-proposition distributes the subject to the predicate, but not the reverse. Consider the following categorical proposition: "All dogs are mammals". All dogs are indeed mammals, but it would be false to say all mammals are dogs. Since all dogs are included in the class of mammals, "dogs" is said to be distributed to "mammals". Since all mammals are not necessarily dogs, "mammals" is undistributed to "dogs".

E form (otherwise known as Universal Negative)

An E-proposition distributes bidirectionally between the subject and predicate. From the categorical proposition "No beetles are mammals", we can infer that no mammals are beetles. Since all beetles are defined not to be mammals, and all mammals are defined not to be beetles, both classes are distributed.

The empty set is a particular case of subject and predicate class distribution.

I form (otherwise known as Particular Affirmative)

Both terms in an I-proposition are undistributed. For example, "Some Americans are conservatives". Neither term can be entirely distributed to the other. From this proposition, it is not possible to say that all Americans are conservatives or that all conservatives are Americans. Note the ambiguity in the statement: It could either mean that "Some Americans (or other) are conservatives" ( de dicto ), or it could mean that "Some Americans (in particular, Albert and Bob) are conservatives" ( de re ).

O form (otherwise known as Particular Negative)

In an O-proposition, only the predicate is distributed. Consider the following: "Some politicians are not corrupt". Since not all politicians are defined by this rule, the subject is undistributed. The predicate, though, is distributed because all the members of "corrupt people" will not match the group of people defined as "some politicians". Since the rule applies to every member of the corrupt people group, namely, "All corrupt people are not some politicians", the predicate is distributed.

The distribution of the predicate in an O-proposition is often confusing due to its ambiguity. When a statement such as "Some politicians are not corrupt" is said to distribute the "corrupt people" group to "some politicians", the information seems of little value, since the group "some politicians" is not defined; This is the de dicto interpretation of the intensional statement (), or "Some politicians (or other) are not corrupt". But if, as an example, this group of "some politicians" were defined to contain a single person, Albert, the relationship becomes clearer; This is the de re interpretation of the intensional statement (), or "Some politicians (in particular) are not corrupt". The statement would then mean that, of every entry listed in the corrupt people group, not one of them will be Albert: "All corrupt people are not Albert". This is a definition that applies to every member of the "corrupt people" group, and is, therefore, distributed.

Summary

In short, for the subject to be distributed, the statement must be universal (e.g., "all", "no"). For the predicate to be distributed, the statement must be negative (e.g., "no", "not"). [5]

NameStatementDistribution
SubjectPredicate
AAll S is P.distributedundistributed
ENo S is P.distributeddistributed
ISome S is P.undistributedundistributed
OSome S is not P.undistributeddistributed

Criticism

Peter Geach and others have criticized the use of distribution to determine the validity of an argument. [6] [7]

It has been suggested that statements of the form "Some A are not B" would be less problematic if stated as "Not every A is B," [8] which is perhaps a closer translation to Aristotle's original form for this type of statement. [9]

Another criticism is that there is a little step from "All corrupt people are not some politicians" to "All corrupt people are not politicians" (whether meaning "No corrupt people are politicians" or "Not all corrupt people are politicians", which are different from the original "Some politicians are not corrupt"), or to "Every corrupt person is not some politician" (also different).

Operations on categorical statements

There are several operations (e.g., conversion, obversion, and contraposition) that can be performed on a categorical statement to change it into another. The new statement may or may not be equivalent to the original. [In the following tables that illustrate such operations, at each row, boxes are green if statements in one green box are equivalent to statements in another green box, boxes are red if statements in one red box are inequivalent to statements in another red box. Statements in a yellow box means that these are implied or valid by the statement in the left-most box when the condition stated in the same yellow box is satisfied.]

Some operations require the notion of the class complement. This refers to every element under consideration which is not an element of the class. Class complements are very similar to set complements. The class complement of a set P will be called "non-P".

Conversion

The simplest operation is conversion where the subject and predicate terms are interchanged. Note that this is not same to the implicational converse in the modern logic where a material implication statement is converted (conversion) to another material implication statement . Both conversions are equivalent only for A type categorical statements.

NameStatementConverse / Obverted ConverseSubaltern / Obverted Subaltern / Condition of ValidityConverse per accidens / Obverted Converse per accidens / Condition of Validity
AAll S is P.All P is S.
No P is non-S.
Some S is P.
Some S is not non-P.
(if S exists)
Some P is S.
Some P is not non-S.
(if S exists)
ENo S is P.No P is S.
All P is non-S.
Some S is not P.
Some S is non-P.
(if S exists)
Some P is not S.
Some P is non-S.
(if P exists)
ISome S is P.Some P is S.
Some P is not non-S.
OSome S is not P.Some P is not S.
Some P is non-S.

From a statement in E or I form, it is valid to conclude its converse (as they are equivalent). This is not the case for the A and O forms.

Obversion

Obversion changes the quality (that is the affirmativity or negativity) of the statement and the predicate term. [10] For example, by obversion, a universal affirmative statement become a universal negative statement with the predicate term that is the class complement of the predicate term of the original universal affirmative statement. In the modern forms of the four categorical statements, the negation of the statement corresponding to a predicate term P, , is interpreted as a predicate term 'non-P' in each categorical statement in obversion. The equality of can be used to obvert affirmative categorical statements.

NameStatementObverse (obverted)
AAll S is P.No S is non-P.
ENo S is P.All S is non-P.
ISome S is P.Some S is not non-P.
OSome S is not P.Some S is non-P.

Categorical statements are logically equivalent to their obverse. As such, a Venn diagram illustrating any one of the forms would be identical to the Venn diagram illustrating its obverse.

Contraposition

Contraposition is the process of simultaneous interchange and negation of the subject and predicate of a categorical statement. It is also equivalent to converting (applying conversion) the obvert (the outcome of obversion) of a categorical statement. Note that this contraposition in the traditional logic is not same to contraposition (also called transposition) in the modern logic stating that material implication statements and are logically equivalent. Both contrapositions are equivalent only for A type categorical statements.

NameStatementContrapositive / Obverted ContrapositiveContrapositive per accidens / Obverted Contrapositive per accidens / Condition of Validity
AAll S is P.All non-P is non-S.
No non-P is S.
Some non-P is non-S.
Some non-P is not S.
(if non-P exists)
ENo S is P.No non-P is non-S.
All non-P is S.
Some non-P is not non-S.
Some non-P is S.
(if S exists)
ISome S is P.Some non-P is non-S.
Some non-P is not S.
OSome S is not P.Some non-P is not non-S.
Some non-P is S.

Treatment in first-order logic

First-order logic is a much more expressive logic than that given by categorical propositions. In first order logic, the four forms can be expressed as:

See also

Notes

  1. Churchill, Robert Paul (1990). Logic: An Introduction (2nd ed.). New York: St. Martin's Press. p. 143. ISBN   0-312-02353-7. OCLC   21216829. A categorical statement is an assertion or a denial that all or some members of the subject class are included in the predicate class.
  2. Churchill, Robert Paul (1990). Logic: An Introduction (2nd ed.). New York: St. Martin's Press. p. 144. ISBN   0-312-02353-7. OCLC   21216829. During the Middle Ages, logicians gave the four categorical forms the special names of A, E, I, and O. These four letters came from the first two vowels in the Latin word 'affirmo' ('I affirm') and the vowels in the Latin 'nego' ('I deny').
  3. "Dictionary". Philosophy Pages. 2021-08-25. Archived from the original on 2001-02-09.
  4. Copi, Irving M.; Cohen, Carl (2002). Introduction to Logic (11th ed.). Upper Saddle River, NJ: Prentice-Hall. p. 185. ISBN   0-13-033735-8. Every standard-form categorical proposition is said to have a quality, either affirmative or negative.
  5. Damer 2008, p. 82.
  6. Lagerlund, Henrik (January 21, 2010). "Medieval Theories of the Syllogism". Stanford Encyclopedia of Philosophy. Retrieved 2010-12-10.
  7. Murphree, Wallace A. (Summer 1994). "The Irrelevance of Distribution for the Syllogism". Notre Dame Journal of Formal Logic. 35 (3): 433–449. doi: 10.1305/ndjfl/1040511349 .
  8. Geach 1980, pp. 62–64.
  9. Parsons, Terence (2006-10-01). "The Traditional Square of Opposition". Stanford Encyclopedia of Philosophy. Retrieved 2010-12-10.
  10. Hausman, Alan; Kahane, Howard; Tidman, Paul (2010). Logic and Philosophy: A Modern Introduction (11th ed.). Australia: Thomson Wadsworth/Cengage learning. p.  326. ISBN   9780495601586 . Retrieved 26 February 2013. In the process of obversion, we change the quality of a proposition (from affirmative to negative or from negative to affirmative), and then replace its predicate with the negation or complement of the predicate.

Related Research Articles

In classical logic, disjunctive syllogism is a valid argument form which is a syllogism having a disjunctive statement for one of its premises.

In propositional logic, modus ponens, also known as modus ponendo ponens, implication elimination, or affirming the antecedent, is a deductive argument form and rule of inference. It can be summarized as "P implies Q.P is true. Therefore, Q must also be true."

<span class="mw-page-title-main">Syllogism</span> Type of logical argument that applies deductive reasoning

A syllogism is a kind of logical argument that applies deductive reasoning to arrive at a conclusion based on two propositions that are asserted or assumed to be true.

In logic and mathematics, the converse of a categorical or implicational statement is the result of reversing its two constituent statements. For the implication PQ, the converse is QP. For the categorical proposition All S are P, the converse is All P are S. Either way, the truth of the converse is generally independent from that of the original statement.

In logic, an inverse is a type of conditional sentence which is an immediate inference made from another conditional sentence. More specifically, given a conditional sentence of the form , the inverse refers to the sentence . Since an inverse is the contrapositive of the converse, inverse and converse are logically equivalent to each other.

<span class="mw-page-title-main">Negation</span> Logical operation

In logic, negation, also called the logical not or logical complement, is an operation that takes a proposition to another proposition "not ", standing for " is not true", written , or . It is interpreted intuitively as being true when is false, and false when is true. Negation is thus a unary logical connective. It may be applied as an operation on notions, propositions, truth values, or semantic values more generally. In classical logic, negation is normally identified with the truth function that takes truth to falsity. In intuitionistic logic, according to the Brouwer–Heyting–Kolmogorov interpretation, the negation of a proposition is the proposition whose proofs are the refutations of .

Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not assume the law of the excluded middle and double negation elimination, which are fundamental inference rules in classical logic.

<span class="mw-page-title-main">Logical biconditional</span> Concept in logic and mathematics

In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or biimplication or bientailment, is the logical connective used to conjoin two statements and to form the statement " if and only if ", where is known as the antecedent, and the consequent.

<span class="mw-page-title-main">Square of opposition</span> Type of logic diagram

In term logic, the square of opposition is a diagram representing the relations between the four basic categorical propositions. The origin of the square can be traced back to Aristotle's tractate On Interpretation and its distinction between two oppositions: contradiction and contrariety. However, Aristotle did not draw any diagram; this was done several centuries later by Apuleius and Boethius.

In logic and formal semantics, term logic, also known as traditional logic, syllogistic logic or Aristotelian logic, is a loose name for an approach to formal logic that began with Aristotle and was developed further in ancient history mostly by his followers, the Peripatetics. It was revived after the third century CE by Porphyry's Isagoge.

<span class="mw-page-title-main">Material conditional</span> Logical connective

The material conditional is an operation commonly used in logic. When the conditional symbol is interpreted as material implication, a formula is true unless is true and is false. Material implication can also be characterized inferentially by modus ponens, modus tollens, conditional proof, and classical reductio ad absurdum.

In traditional logic, obversion is a "type of immediate inference in which from a given proposition another proposition is inferred whose subject is the same as the original subject, whose predicate is the contradictory of the original predicate, and whose quality is affirmative if the original proposition's quality was negative and vice versa". The quality of the inferred categorical proposition is changed but the truth value is the same to the original proposition. The immediately inferred proposition is termed the "obverse" of the original proposition, and is a valid form of inference for all types of categorical propositions.

In mathematical logic, Heyting arithmetic is an axiomatization of arithmetic in accordance with the philosophy of intuitionism. It is named after Arend Heyting, who first proposed it.

Epistemic modal logic is a subfield of modal logic that is concerned with reasoning about knowledge. While epistemology has a long philosophical tradition dating back to Ancient Greece, epistemic logic is a much more recent development with applications in many fields, including philosophy, theoretical computer science, artificial intelligence, economics and linguistics. While philosophers since Aristotle have discussed modal logic, and Medieval philosophers such as Avicenna, Ockham, and Duns Scotus developed many of their observations, it was C. I. Lewis who created the first symbolic and systematic approach to the topic, in 1912. It continued to mature as a field, reaching its modern form in 1963 with the work of Kripke.

The False Subtlety of the Four Syllogistic Figures Proved is an essay published by Immanuel Kant in 1762.

In logic, the monadic predicate calculus is the fragment of first-order logic in which all relation symbols in the signature are monadic, and there are no function symbols. All atomic formulas are thus of the form , where is a relation symbol and is a variable.

In logic, especially mathematical logic, an axiomatic system is a type of system of formal deduction developed by Gottlob Frege, Jan Łukasiewicz, Russell and Whitehead, and David Hilbert. Axiomatic deductive systems are most often studied for first-order logic, but are of interest for other logics as well.

In logic and mathematics, contraposition, or transposition, refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as § Proof by contrapositive. The contrapositive of a statement has its antecedent and consequent inverted and flipped.

Markov's principle, named after Andrey Markov Jr, is a conditional existence statement for which there are many equivalent formulations, as discussed below. The principle is logically valid classically, but not in intuitionistic constructive mathematics. However, many particular instances of it are nevertheless provable in a constructive context as well.

Minimal logic, or minimal calculus, is a symbolic logic system originally developed by Ingebrigt Johansson. It is an intuitionistic and paraconsistent logic, that rejects both the law of the excluded middle as well as the principle of explosion, and therefore holding neither of the following two derivations as valid:

References