Metavariable

Last updated

In logic, a metavariable (also metalinguistic variable [1] or syntactical variable) [2] is a symbol or symbol string which belongs to a metalanguage and stands for elements of some object language. For instance, in the sentence

Contents

Let A and B be two sentences of a language ℒ

the symbols A and B are part of the metalanguage in which the statement about the object language ℒ is formulated.

John Corcoran considers this terminology unfortunate because it obscures the use of schemata and because such "variables" do not actually range over a domain. [3] :220

The convention is that a metavariable is to be uniformly substituted with the same instance in all its appearances in a given schema. This is in contrast with nonterminal symbols in formal grammars where the nonterminals on the right of a production can be substituted by different instances. [4]

Attempts to formalize the notion of metavariable result in some kind of type theory. [5]

See also

Notes

  1. Hunter 1973 , p. 13.
  2. Shoenfield 2001 , p. 7.
  3. Corcoran 2006 , p. 220.
  4. Tennent 2002 , pp. 36–37, 210.
  5. Masahiko Sato, Takafumi Sakurai, Yukiyoshi Kameyama, and Atsushi Igarashi. "Calculi of Meta-variables [ permanent dead link ]" in Computer Science Logic. 17th International Workshop CSL 2003. 12th Annual Conference of the EACSL. 8th Kurt Gödel Colloquium, KGC 2003, Vienna, Austria, August 25-30, 2003. Proceedings, Springer Lecture Notes in Computer Science 2803. ISBN   3-540-40801-0. pp. 484–497

Related Research Articles

<span class="mw-page-title-main">Context-free grammar</span> Type of formal grammar

In formal language theory, a context-free grammar (CFG) is a formal grammar whose production rules can be applied to a nonterminal symbol regardless of its context. In particular, in a context-free grammar, each production rule is of the form

First-order logic—also called predicate logic, predicate calculus, quantificational logic—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists" is a quantifier, while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.

The propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives representing the truth functions of conjunction, disjunction, implication, biconditional, and negation. Some sources include other connectives, as in the table below.

A metasyntactic variable is a specific word or set of words identified as a placeholder in computer science and specifically computer programming. These words are commonly found in source code and are intended to be modified or substituted before real-world usage. For example, foo and bar are used in over 330 Internet Engineering Task Force Requests for Comments, the documents which define foundational internet technologies like HTTP (web), TCP/IP, and email protocols.

In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded.

In philosophy of logic and logic, a rule of inference, inference rule or transformation rule is a logical form consisting of a function which takes premises, analyzes their syntax, and returns a conclusion.

A metasyntax is a syntax used to define the syntax of a programming language or formal language. It describes the allowable structure and composition of phrases and sentences of a metalanguage, which is used to describe either a natural language or a computer programming language. Some of the widely used formal metalanguages for computer languages are Backus–Naur form (BNF), extended Backus–Naur form (EBNF), Wirth syntax notation (WSN), and augmented Backus–Naur form (ABNF).

Metalogic is the metatheory of logic. Whereas logic studies how logical systems can be used to construct valid and sound arguments, metalogic studies the properties of logical systems. Logic concerns the truths that may be derived using a logical system; metalogic concerns the truths that may be derived about the languages and systems that are used to express truths.

A formal system is an abstract structure and formalization of an axiomatic system used for inferring theorems from axioms by a set of inference rules.

In logic and linguistics, a metalanguage is a language used to describe another language, often called the object language. Expressions in a metalanguage are often distinguished from those in the object language by the use of italics, quotation marks, or writing on a separate line. The structure of sentences and phrases in a metalanguage can be described by a metasyntax. For example, to say that the word "noun" can be used as a noun in a sentence, one could write "noun" is a <noun>.

In mathematical logic, propositional logic and predicate logic, a well-formed formula, abbreviated WFF or wff, often simply formula, is a finite sequence of symbols from a given alphabet that is part of a formal language.

<span class="mw-page-title-main">Syntax (logic)</span> Rules used for constructing, or transforming the symbols and words of a language

In logic, syntax is anything having to do with formal languages or formal systems without regard to any interpretation or meaning given to them. Syntax is concerned with the rules used for constructing, or transforming the symbols and words of a language, as contrasted with the semantics of a language which is concerned with its meaning.

In philosophy and logic, a deflationary theory of truth is one of a family of theories that all have in common the claim that assertions of predicate truth of a statement do not attribute a property called "truth" to such a statement.

A semantic theory of truth is a theory of truth in the philosophy of language which holds that truth is a property of sentences.

In mathematical logic, an axiom schema generalizes the notion of axiom.

In computer science, a Van Wijngaarden grammar is a formalism for defining formal languages. The name derives from the formalism invented by Adriaan van Wijngaarden for the purpose of defining the ALGOL 68 programming language. The resulting specification remains its most notable application.

Quasi-quotation or Quine quotation is a linguistic device in formal languages that facilitates rigorous and terse formulation of general rules about linguistic expressions while properly observing the use–mention distinction. It was introduced by the philosopher and logician Willard Van Orman Quine in his book Mathematical Logic, originally published in 1940. Put simply, quasi-quotation enables one to introduce symbols that stand for a linguistic expression in a given instance and are used as that linguistic expression in a different instance.

In formal language theory, an alphabet, sometimes called a vocabulary, is a non-empty set of indivisible symbols/characters/glyphs, typically thought of as representing letters, characters, digits, phonemes, or even words. Alphabets in this technical sense of a set are used in a diverse range of fields including logic, mathematics, computer science, and linguistics. An alphabet may have any cardinality ("size") and, depending on its purpose, may be finite, countable, or even uncountable.

An interpretation is an assignment of meaning to the symbols of a formal language. Many formal languages used in mathematics, logic, and theoretical computer science are defined in solely syntactic terms, and as such do not have any meaning until they are given some interpretation. The general study of interpretations of formal languages is called formal semantics.

References