In logic, a rule of inference is admissible in a formal system if the set of theorems of the system does not change when that rule is added to the existing rules of the system. In other words, every formula that can be derived using that rule is already derivable without that rule, so, in a sense, it is redundant. The concept of an admissible rule was introduced by Paul Lorenzen (1955).
Admissibility has been systematically studied only in the case of structural (i.e. substitution-closed) rules in propositional non-classical logics, which we will describe next.
Let a set of basic propositional connectives be fixed (for instance, in the case of superintuitionistic logics, or in the case of monomodal logics). Well-formed formulas are built freely using these connectives from a countably infinite set of propositional variables p0, p1, .... A substitution σ is a function from formulas to formulas that commutes with applications of the connectives, i.e.,
for every connective f, and formulas A1, ... , An. (We may also apply substitutions to sets Γ of formulas, making σΓ = {σA: A∈ Γ}.) A Tarski-style consequence relation [1] is a relation between sets of formulas, and formulas, such that
for all formulas A, B, and sets of formulas Γ, Δ. A consequence relation such that
for all substitutions σ is called structural. (Note that the term "structural" as used here and below is unrelated to the notion of structural rules in sequent calculi.) A structural consequence relation is called a propositional logic. A formula A is a theorem of a logic if .
For example, we identify a superintuitionistic logic L with its standard consequence relation generated by modus ponens and axioms, and we identify a normal modal logic with its global consequence relation generated by modus ponens, necessitation, and (as axioms) the theorems of the logic.
A structural inference rule [2] (or just rule for short) is given by a pair (Γ, B), usually written as
where Γ = {A1, ... , An} is a finite set of formulas, and B is a formula. An instance of the rule is
for a substitution σ. The rule Γ/B is derivable in , if . It is admissible if for every instance of the rule, σB is a theorem whenever all formulas from σΓ are theorems. [3] In other words, a rule is admissible if it, when added to the logic, does not lead to new theorems. [4] We also write if Γ/B is admissible. (Note that is a structural consequence relation on its own.)
Every derivable rule is admissible, but not vice versa in general. A logic is structurally complete if every admissible rule is derivable, i.e., . [5]
In logics with a well-behaved conjunction connective (such as superintuitionistic or modal logics), a rule is equivalent to with respect to admissibility and derivability. It is therefore customary to only deal with unary rules A/B.
The basic question about admissible rules of a given logic is whether the set of all admissible rules is decidable. Note that the problem is nontrivial even if the logic itself (i.e., its set of theorems) is decidable: the definition of admissibility of a rule A/B involves an unbounded universal quantifier over all propositional substitutions. Hence a priori we only know that admissibility of rule in a decidable logic is (i.e., its complement is recursively enumerable). For instance, it is known that admissibility in the bimodal logics Ku and K4u (the extensions of K or K4 with the universal modality) is undecidable. [11] Remarkably, decidability of admissibility in the basic modal logic K is a major open problem.
Nevertheless, admissibility of rules is known to be decidable in many modal and superintuitionistic logics. The first decision procedures for admissible rules in basic transitive modal logics were constructed by Rybakov, using the reduced form of rules. [12] A modal rule in variables p0, ... , pk is called reduced if it has the form
where each is either blank, or negation . For each rule r, we can effectively construct a reduced rule s (called the reduced form of r) such that any logic admits (or derives) r if and only if it admits (or derives) s, by introducing extension variables for all subformulas in A, and expressing the result in the full disjunctive normal form. It is thus sufficient to construct a decision algorithm for admissibility of reduced rules.
Let be a reduced rule as above. We identify every conjunction with the set of its conjuncts. For any subset W of the set of all conjunctions, let us define a Kripke model by
Then the following provides an algorithmic criterion for admissibility in K4: [13]
Theorem. The rule is not admissible in K4 if and only if there exists a set such that
Similar criteria can be found for the logics S4, GL, and Grz. [14] Furthermore, admissibility in intuitionistic logic can be reduced to admissibility in Grz using the Gödel–McKinsey–Tarski translation: [15]
Rybakov (1997) developed much more sophisticated techniques for showing decidability of admissibility, which apply to a robust (infinite) class of transitive (i.e., extending K4 or IPC) modal and superintuitionistic logics, including e.g. S4.1, S4.2, S4.3, KC, Tk (as well as the above-mentioned logics IPC, K4, S4, GL, Grz). [16]
Despite being decidable, the admissibility problem has relatively high computational complexity, even in simple logics: admissibility of rules in the basic transitive logics IPC, K4, S4, GL, Grz is coNEXP-complete. [17] This should be contrasted with the derivability problem (for rules or formulas) in these logics, which is PSPACE-complete. [18]
Admissibility in propositional logics is closely related to unification in the equational theory of modal or Heyting algebras. The connection was developed by Ghilardi (1999, 2000). In the logical setup, a unifier of a formula A in the language of a logic L (an L-unifier for short) is a substitution σ such that σA is a theorem of L. (Using this notion, we can rephrase admissibility of a rule A/B in L as "every L-unifier of A is an L-unifier of B".) An L-unifier σ is less general than an L-unifier τ, written as σ ≤ τ, if there exists a substitution υ such that
for every variable p. A complete set of unifiers of a formula A is a set S of L-unifiers of A such that every L-unifier of A is less general than some unifier from S. A most general unifier (MGU) of A is a unifier σ such that {σ} is a complete set of unifiers of A. It follows that if S is a complete set of unifiers of A, then a rule A/B is L-admissible if and only if every σ in S is an L-unifier of B. Thus we can characterize admissible rules if we can find well-behaved complete sets of unifiers.
An important class of formulas that have a most general unifier are the projective formulas: these are formulas A such that there exists a unifier σ of A such that
for every formula B. Note that σ is an MGU of A. In transitive modal and superintuitionistic logics with the finite model property, one can characterize projective formulas semantically as those whose set of finite L-models has the extension property: [19] if M is a finite Kripke L-model with a root r whose cluster is a singleton, and the formula A holds at all points of M except for r, then we can change the valuation of variables in r so as to make A true at r as well. Moreover, the proof provides an explicit construction of an MGU for a given projective formula A.
In the basic transitive logics IPC, K4, S4, GL, Grz (and more generally in any transitive logic with the finite model property whose set of finite frame satisfies another kind of extension property), we can effectively construct for any formula A its projective approximation Π(A): [20] a finite set of projective formulas such that
It follows that the set of MGUs of elements of Π(A) is a complete set of unifiers of A. Furthermore, if P is a projective formula, then
for any formula B. Thus we obtain the following effective characterization of admissible rules: [21]
Let L be a logic. A set R of L-admissible rules is called a basis [22] of admissible rules, if every admissible rule Γ/B can be derived from R and the derivable rules of L, using substitution, composition, and weakening. In other words, R is a basis if and only if is the smallest structural consequence relation that includes and R.
Notice that decidability of admissible rules of a decidable logic is equivalent to the existence of recursive (or recursively enumerable) bases: on the one hand, the set of all admissible rules is a recursive basis if admissibility is decidable. On the other hand, the set of admissible rules is always co-recursively enumerable, and if we further have a recursively enumerable basis, set of admissible rules is also recursively enumerable; hence it is decidable. (In other words, we can decide admissibility of A/B by the following algorithm: we start in parallel two exhaustive searches, one for a substitution σ that unifies A but not B, and one for a derivation of A/B from R and . One of the searches has to eventually come up with an answer.) Apart from decidability, explicit bases of admissible rules are useful for some applications, e.g. in proof complexity. [23]
For a given logic, we can ask whether it has a recursive or finite basis of admissible rules, and to provide an explicit basis. If a logic has no finite basis, it can nevertheless have an independent basis: a basis R such that no proper subset of R is a basis.
In general, very little can be said about existence of bases with desirable properties. For example, while tabular logics are generally well-behaved, and always finitely axiomatizable, there exist tabular modal logics without a finite or independent basis of rules. [24] Finite bases are relatively rare: even the basic transitive logics IPC, K4, S4, GL, Grz do not have a finite basis of admissible rules, [25] though they have independent bases. [26]
A rule Γ/B is valid in a modal or intuitionistic Kripke frame , if the following is true for every valuation in F:
(The definition readily generalizes to general frames, if needed.)
Let X be a subset of W, and t a point in W. We say that t is
We say that a frame F has reflexive (irreflexive) tight predecessors, if for every finite subset X of W, there exists a reflexive (irreflexive) tight predecessor of X in W.
We have: [31]
Note that apart from a few trivial cases, frames with tight predecessors must be infinite. Hence admissible rules in basic transitive logics do not enjoy the finite model property.
While a general classification of structurally complete logics is not an easy task, we have a good understanding of some special cases.
Intuitionistic logic itself is not structurally complete, but its fragments may behave differently. Namely, any disjunction-free rule or implication-free rule admissible in a superintuitionistic logic is derivable. [32] On the other hand, the Mints rule
is admissible in intuitionistic logic but not derivable, and contains only implications and disjunctions.
We know the maximal structurally incomplete transitive logics. A logic is called hereditarily structurally complete, if any extension is structurally complete. For example, classical logic, as well as the logics LC and Grz.3 mentioned above, are hereditarily structurally complete. A complete description of hereditarily structurally complete superintuitionistic and transitive modal logics was given respectively by Citkin and Rybakov. Namely, a superintuitionistic logic is hereditarily structurally complete if and only if it is not valid in any of the five Kripke frames [9]
Similarly, an extension of K4 is hereditarily structurally complete if and only if it is not valid in any of certain twenty Kripke frames (including the five intuitionistic frames above). [9]
There exist structurally complete logics that are not hereditarily structurally complete: for example, Medvedev's logic is structurally complete, [33] but it is included in the structurally incomplete logic KC.
A rule with parameters is a rule of the form
whose variables are divided into the "regular" variables pi, and the parameters si. The rule is L-admissible if every L-unifier σ of A such that σsi = si for each i is also a unifier of B. The basic decidability results for admissible rules also carry to rules with parameters. [34]
A multiple-conclusion rule is a pair (Γ,Δ) of two finite sets of formulas, written as
Such a rule is admissible if every unifier of Γ is also a unifier of some formula from Δ. [35] For example, a logic L is consistent iff it admits the rule
and a superintuitionistic logic has the disjunction property iff it admits the rule
Again, basic results on admissible rules generalize smoothly to multiple-conclusion rules. [36] In logics with a variant of the disjunction property, the multiple-conclusion rules have the same expressive power as single-conclusion rules: for example, in S4 the rule above is equivalent to
Nevertheless, multiple-conclusion rules can often be employed to simplify arguments.
In proof theory, admissibility is often considered in the context of sequent calculi, where the basic objects are sequents rather than formulas. For example, one can rephrase the cut-elimination theorem as saying that the cut-free sequent calculus admits the cut rule
(By abuse of language, it is also sometimes said that the (full) sequent calculus admits cut, meaning its cut-free version does.) However, admissibility in sequent calculi is usually only a notational variant for admissibility in the corresponding logic: any complete calculus for (say) intuitionistic logic admits a sequent rule if and only if IPC admits the formula rule that we obtain by translating each sequent to its characteristic formula .
First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists" is a quantifier, while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.
Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions.
Saul Aaron Kripke was an American analytic philosopher and logician. He was Distinguished Professor of Philosophy at the Graduate Center of the City University of New York and emeritus professor at Princeton University. Kripke is considered one of the most important philosophers of the latter half of the 20th century. Since the 1960s, he has been a central figure in a number of fields related to mathematical and modal logic, philosophy of language and mathematics, metaphysics, epistemology, and recursion theory.
In propositional logic and Boolean algebra, De Morgan's laws, also known as De Morgan's theorem, are a pair of transformation rules that are both valid rules of inference. They are named after Augustus De Morgan, a 19th-century British mathematician. The rules allow the expression of conjunctions and disjunctions purely in terms of each other via negation.
In classical deductive logic, a consistent theory is one that does not lead to a logical contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent if it has a model, i.e., there exists an interpretation under which all formulas in the theory are true. This is the sense used in traditional Aristotelian logic, although in contemporary mathematical logic the term satisfiable is used instead. The syntactic definition states a theory is consistent if there is no formula such that both and its negation are elements of the set of consequences of . Let be a set of closed sentences and the set of closed sentences provable from under some formal deductive system. The set of axioms is consistent when for no formula .
Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not assume the law of the excluded middle and double negation elimination, which are fundamental inference rules in classical logic.
In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a proof is a conditional tautology instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathematicians than to David Hilbert's earlier style of formal logic, in which every line was an unconditional tautology. More subtle distinctions may exist; for example, propositions may implicitly depend upon non-logical axioms. In that case, sequents signify conditional theorems in a first-order language rather than conditional tautologies.
Modal logic is a kind of logic used to represent statements about necessity and possibility. It plays a major role in philosophy and related fields as a tool for understanding concepts such as knowledge, obligation, and causation. For instance, in epistemic modal logic, the formula can be used to represent the statement that is known. In deontic modal logic, that same formula can represent that is a moral obligation.
A paraconsistent logic is an attempt at a logical system to deal with contradictions in a discriminating way. Alternatively, paraconsistent logic is the subfield of logic that is concerned with studying and developing "inconsistency-tolerant" systems of logic, which reject the principle of explosion.
In mathematical logic, Löb's theorem states that in Peano arithmetic (PA) (or any formal system including PA), for any formula P, if it is provable in PA that "if P is provable in PA then P is true", then P is provable in PA. If Prov(P) means that the formula P is provable, we may express this more formally as
Kripke semantics is a formal semantics for non-classical logic systems created in the late 1950s and early 1960s by Saul Kripke and André Joyal. It was first conceived for modal logics, and later adapted to intuitionistic logic and other non-classical systems. The development of Kripke semantics was a breakthrough in the theory of non-classical logics, because the model theory of such logics was almost non-existent before Kripke.
In mathematical logic, structural proof theory is the subdiscipline of proof theory that studies proof calculi that support a notion of analytic proof, a kind of proof whose semantic properties are exposed. When all the theorems of a logic formalised in a structural proof theory have analytic proofs, then the proof theory can be used to demonstrate such things as consistency, provide decision procedures, and allow mathematical or computational witnesses to be extracted as counterparts to theorems, the kind of task that is more often given to model theory.
In mathematical logic, Heyting arithmetic is an axiomatization of arithmetic in accordance with the philosophy of intuitionism. It is named after Arend Heyting, who first proposed it.
In mathematical logic and automated theorem proving, resolution is a rule of inference leading to a refutation-complete theorem-proving technique for sentences in propositional logic and first-order logic. For propositional logic, systematically applying the resolution rule acts as a decision procedure for formula unsatisfiability, solving the Boolean satisfiability problem. For first-order logic, resolution can be used as the basis for a semi-algorithm for the unsatisfiability problem of first-order logic, providing a more practical method than one following from Gödel's completeness theorem.
In logic, a modal companion of a superintuitionistic (intermediate) logic L is a normal modal logic that interprets L by a certain canonical translation, described below. Modal companions share various properties of the original intermediate logic, which enables to study intermediate logics using tools developed for modal logic.
In logic, especially mathematical logic, a Hilbert system, sometimes called Hilbert calculus, Hilbert-style deductive system or Hilbert–Ackermann system, is a type of system of formal deduction attributed to Gottlob Frege and David Hilbert. These deductive systems are most often studied for first-order logic, but are of interest for other logics as well.
In mathematical logic and metalogic, a formal system is called complete with respect to a particular property if every formula having the property can be derived using that system, i.e. is one of its theorems; otherwise the system is said to be incomplete. The term "complete" is also used without qualification, with differing meanings depending on the context, mostly referring to the property of semantical validity. Intuitively, a system is called complete in this particular sense, if it can derive every formula that is true.
In mathematical logic, the hypersequent framework is an extension of the proof-theoretical framework of sequent calculi used in structural proof theory to provide analytic calculi for logics that are not captured in the sequent framework. A hypersequent is usually taken to be a finite multiset of ordinary sequents, written
A non-normal modal logic is a variant of modal logic that deviates from the basic principles of normal modal logics.