Cut-elimination theorem

Last updated

The cut-elimination theorem (or Gentzen's Hauptsatz) is the central result establishing the significance of the sequent calculus. It was originally proved by Gerhard Gentzen in his landmark 1934 paper "Investigations in Logical Deduction" for the systems LJ and LK formalising intuitionistic and classical logic respectively. The cut-elimination theorem states that any judgement that possesses a proof in the sequent calculus making use of the cut rule also possesses a cut-free proof, that is, a proof that does not make use of the cut rule. [1] [2]

Contents

The cut rule

A sequent is a logical expression relating multiple formulas, in the form "", which is to be read as " proves ", and (as glossed by Gentzen) should be understood as equivalent to the truth-function "If ( and and …) then ( or or …)." [3] Note that the left-hand side (LHS) is a conjunction (and) and the right-hand side (RHS) is a disjunction (or).

The LHS may have arbitrarily many or few formulae; when the LHS is empty, the RHS is a tautology. In LK, the RHS may also have any number of formulae—if it has none, the LHS is a contradiction, whereas in LJ the RHS may only have one formula or none: here we see that allowing more than one formula in the RHS is equivalent, in the presence of the right contraction rule, to the admissibility of the law of the excluded middle. However, the sequent calculus is a fairly expressive framework, and there have been sequent calculi for intuitionistic logic proposed that allow many formulae in the RHS. From Jean-Yves Girard's logic LC it is easy to obtain a rather natural formalisation of classical logic where the RHS contains at most one formula; it is the interplay of the logical and structural rules that is the key here.

"Cut" is a rule of inference in the normal statement of the sequent calculus, and equivalent to a variety of rules in other proof theories, which, given

and

allows one to infer

That is, it "cuts" the occurrences of the formula out of the inferential relation.

Cut elimination

The cut-elimination theorem states that (for a given system) any sequent provable using the rule Cut can be proved without use of this rule.

For sequent calculi that have only one formula in the RHS, the "Cut" rule reads, given

and

allows one to infer

If we think of as a theorem, then cut-elimination in this case simply says that a lemma used to prove this theorem can be inlined. Whenever the theorem's proof mentions lemma , we can substitute the occurrences for the proof of . Consequently, the cut rule is admissible.

Consequences of the theorem

For systems formulated in the sequent calculus, analytic proofs are those proofs that do not use Cut. Typically such a proof will be longer, of course, and not necessarily trivially so. In his essay "Don't Eliminate Cut!" [4] George Boolos demonstrated that there was a derivation that could be completed in a page using cut, but whose analytic proof could not be completed in the lifespan of the universe.

The theorem has many, rich consequences:

Cut elimination is one of the most powerful tools for proving interpolation theorems. The possibility of carrying out proof search based on resolution, the essential insight leading to the Prolog programming language, depends upon the admissibility of Cut in the appropriate system.

For proof systems based on higher-order typed lambda calculus through a Curry–Howard isomorphism, cut elimination algorithms correspond to the strong normalization property (every proof term reduces in a finite number of steps into a normal form).

See also

Notes

  1. Curry 1977 , pp. 208–213, gives a 5-page proof of the elimination theorem. See also pages 188, 250.
  2. Kleene 2009 , pp. 453, gives a very brief proof of the cut-elimination theorem.
  3. Wilfried Buchholz, Beweistheorie (university lecture notes about cut-elimination, German, 2002-2003)
  4. Boolos 1984 , pp. 373–378

Related Research Articles

In logic and deductive reasoning, an argument is sound if it is both valid in form and has no false premises. Soundness has a related meaning in mathematical logic, wherein a formal system of logic is sound if and only if every well-formed formula that can be proven in the system is logically valid with respect to the logical semantics of the system.

<span class="mw-page-title-main">Gerhard Gentzen</span> German mathematician

Gerhard Karl Erich Gentzen was a German mathematician and logician. He made major contributions to the foundations of mathematics, proof theory, especially on natural deduction and sequent calculus. He died of starvation in a Czech prison camp in Prague in 1945, having been interned as a German national after the Second World War.

In logic and proof theory, natural deduction is a kind of proof calculus in which logical reasoning is expressed by inference rules closely related to the "natural" way of reasoning. This contrasts with Hilbert-style systems, which instead use axioms as much as possible to express the logical laws of deductive reasoning.

Proof theory is a major branch of mathematical logic and theoretical computer science within which proofs are treated as formal mathematical objects, facilitating their analysis by mathematical techniques. Proofs are typically presented as inductively-defined data structures such as lists, boxed lists, or trees, which are constructed according to the axioms and rules of inference of a given logical system. Consequently, proof theory is syntactic in nature, in contrast to model theory, which is semantic in nature.

In logic and the philosophy of logic, specifically in deductive reasoning, a rule of inference, inference rule or transformation rule is a logical form consisting of a function which takes premises, analyzes their syntax, and returns a conclusion.

In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a proof is a conditional tautology instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathematicians than David Hilbert's earlier style of formal logic, in which every line was an unconditional tautology. More subtle distinctions may exist; for example, propositions may implicitly depend upon non-logical axioms. In that case, sequents signify conditional theorems of a first-order theory rather than conditional tautologies.

In mathematical logic, a sequent is a very general kind of conditional assertion.

In programming language theory and proof theory, the Curry–Howard correspondence is the direct relationship between computer programs and mathematical proofs. It is also known as the Curry–Howard isomorphism or equivalence, or the proofs-as-programs and propositions- or formulae-as-types interpretation.

In logic, a substructural logic is a logic lacking one of the usual structural rules, such as weakening, contraction, exchange or associativity. Two of the more significant substructural logics are relevance logic and linear logic.

In mathematical logic, a deduction theorem is a metatheorem that justifies doing conditional proofs from a hypothesis in systems that do not explicitly axiomatize that hypothesis, i.e. to prove an implication A → B, it is sufficient to assume A as a hypothesis and then proceed to derive B. Deduction theorems exist for both propositional logic and first-order logic. The deduction theorem is an important tool in Hilbert-style deduction systems because it permits one to write more comprehensible and usually much shorter proofs than would be possible without it. In certain other formal proof systems the same conveniency is provided by an explicit inference rule; for example natural deduction calls it implication introduction.

In the logical discipline of proof theory, a structural rule is an inference rule of a sequent calculus that does not refer to any logical connective but instead operates on the sequents directly. Structural rules often mimic the intended meta-theoretic properties of the logic. Logics that deny one or more of the structural rules are classified as substructural logics.

Proof-theoretic semantics is an approach to the semantics of logic that attempts to locate the meaning of propositions and logical connectives not in terms of interpretations, as in Tarskian approaches to semantics, but in the role that the proposition or logical connective plays within a system of inference.

In mathematical logic, structural proof theory is the subdiscipline of proof theory that studies proof calculi that support a notion of analytic proof, a kind of proof whose semantic properties are exposed. When all the theorems of a logic formalised in a structural proof theory have analytic proofs, then the proof theory can be used to demonstrate such things as consistency, provide decision procedures, and allow mathematical or computational witnesses to be extracted as counterparts to theorems, the kind of task that is more often given to model theory.

In mathematics, an analytic proof is a proof of a theorem in analysis that only makes use of methods from analysis, and that does not predominantly make use of algebraic or geometrical methods. The term was first used by Bernard Bolzano, who first provided a non-analytic proof of his intermediate value theorem and then, several years later provided a proof of the theorem that was free from intuitions concerning lines crossing each other at a point, and so he felt happy calling it analytic.

In mathematical logic, the disjunction and existence properties are the "hallmarks" of constructive theories such as Heyting arithmetic and constructive set theories (Rathjen 2005).

In mathematical logic, the cut rule is an inference rule of sequent calculus. It is a generalisation of the classical modus ponens inference rule. Its meaning is that, if a formula A appears as a conclusion in one proof and a hypothesis in another, then another proof in which the formula A does not appear can be deduced. In the particular case of the modus ponens, for example occurrences of man are eliminated of Every man is mortal, Socrates is a man to deduce Socrates is mortal.

In logic, a rule of inference is admissible in a formal system if the set of theorems of the system does not change when that rule is added to the existing rules of the system. In other words, every formula that can be derived using that rule is already derivable without that rule, so, in a sense, it is redundant. The concept of an admissible rule was introduced by Paul Lorenzen (1955).

Herbrand's theorem is a fundamental result of mathematical logic obtained by Jacques Herbrand (1930). It essentially allows a certain kind of reduction of first-order logic to propositional logic. Herbrand's theorem is the logical foundation for most automatic theorem provers. Although Herbrand originally proved his theorem for arbitrary formulas of first-order logic, the simpler version shown here, restricted to formulas in prenex form containing only existential quantifiers, became more popular.

Suppes–Lemmon notation is a natural deductive logic notation system developed by E.J. Lemmon. Derived from Suppes' method, it represents natural deduction proofs as sequences of justified steps. Both methods use inference rules derived from Gentzen's 1934/1935 natural deduction system, in which proofs were presented in tree-diagram form rather than in the tabular form of Suppes and Lemmon. Although the tree-diagram layout has advantages for philosophical and educational purposes, the tabular layout is much more convenient for practical applications.

A non-normal modal logic is a variant of modal logic that deviates from the basic principles of normal modal logics.

References