In logic, a modal companion of a superintuitionistic (intermediate) logic L is a normal modal logic that interprets L by a certain canonical translation, described below. Modal companions share various properties of the original intermediate logic, which enables to study intermediate logics using tools developed for modal logic.
Let A be a propositional intuitionistic formula. A modal formula T(A) is defined by induction on the complexity of A:
As negation is in intuitionistic logic defined by , we also have
T is called the Gödel translation or Gödel–McKinsey–Tarski translation. The translation is sometimes presented in slightly different ways: for example, one may insert before every subformula. All such variants are provably equivalent in S4.
For any normal modal logic M that extends S4, we define its si-fragmentρM as
The si-fragment of any normal extension of S4 is a superintuitionistic logic. A modal logic M is a modal companion of a superintuitionistic logic L if .
Every superintuitionistic logic has modal companions. The smallest modal companion of L is
where denotes normal closure. It can be shown that every superintuitionistic logic also has a largest modal companion, which is denoted by σL. A modal logic M is a companion of L if and only if .
For example, S4 itself is the smallest modal companion of intuitionistic logic (IPC). The largest modal companion of IPC is the Grzegorczyk logic Grz, axiomatized by the axiom
over K. The smallest modal companion of classical logic (CPC) is Lewis' S5, whereas its largest modal companion is the logic
More examples:
L | τL | σL | other companions of L |
---|---|---|---|
IPC | S4 | Grz | S4.1, Dum, ... |
KC | S4.2 | Grz.2 | S4.1.2, ... |
LC | S4.3 | Grz.3 | S4.1.3, S4.3Dum, ... |
CPC | S5 | Triv | see below |
The set of extensions of a superintuitionistic logic L ordered by inclusion forms a complete lattice, denoted ExtL. Similarly, the set of normal extensions of a modal logic M is a complete lattice NExtM. The companion operators ρM, τL, and σL can be considered as mappings between the lattices ExtIPC and NExtS4:
It is easy to see that all three are monotone, and is the identity function on ExtIPC. L. Maksimova and V. Rybakov have shown that ρ, τ, and σ are actually complete, join-complete and meet-complete lattice homomorphisms respectively. The cornerstone of the theory of modal companions is the Blok–Esakia theorem, proved independently by Wim Blok and Leo Esakia. It states
Accordingly, σ and the restriction of ρ to NExtGrz are called the Blok–Esakia isomorphism. An important corollary to the Blok–Esakia theorem is a simple syntactic description of largest modal companions: for every superintuitionistic logic L,
The Gödel translation has a frame-theoretic counterpart. Let be a transitive and reflexive modal general frame. The preorder R induces the equivalence relation
on F, which identifies points belonging to the same cluster. Let be the induced quotient partial order (i.e., ρF is the set of equivalence classes of ), and put
Then is an intuitionistic general frame, called the skeleton of F. The point of the skeleton construction is that it preserves validity modulo Gödel translation: for any intuitionistic formula A,
Therefore, the si-fragment of a modal logic M can be defined semantically: if M is complete with respect to a class C of transitive reflexive general frames, then ρM is complete with respect to the class .
The largest modal companions also have a semantic description. For any intuitionistic general frame , let σV be the closure of V under Boolean operations (binary intersection and complement). It can be shown that σV is closed under , thus is a general modal frame. The skeleton of σF is isomorphic to F. If L is a superintuitionistic logic complete with respect to a class C of general frames, then its largest modal companion σL is complete with respect to .
The skeleton of a Kripke frame is itself a Kripke frame. On the other hand, σF is never a Kripke frame if F is a Kripke frame of infinite depth.
The value of modal companions and the Blok–Esakia theorem as a tool for investigation of intermediate logics comes from the fact that many interesting properties of logics are preserved by some or all of the mappings ρ, σ, and τ. For example,
Every intermediate logic L has an infinite number of modal companions, and moreover, the set of modal companions of L contains an infinite descending chain. For example, consists of S5, and the logics for every positive integer n, where is the n-element cluster. The set of modal companions of any L is either countable, or it has the cardinality of the continuum. Rybakov has shown that the lattice ExtL can be embedded in ; in particular, a logic has a continuum of modal companions if it has a continuum of extensions (this holds, for instance, for all intermediate logics below KC). It is unknown whether the converse is also true.
The Gödel translation can be applied to rules as well as formulas: the translation of a rule
is the rule
A rule R is admissible in a logic L if the set of theorems of L is closed under R. It is easy to see that R is admissible in a superintuitionistic logic L whenever T(R) is admissible in a modal companion of L. The converse is not true in general, but it holds for the largest modal companion of L.
In statistical mechanics, the virial theorem provides a general equation that relates the average over time of the total kinetic energy of a stable system of discrete particles, bound by a conservative force, with that of the total potential energy of the system. Mathematically, the theorem states
Saul Aaron Kripke was an American analytic philosopher and logician. He was Distinguished Professor of Philosophy at the Graduate Center of the City University of New York and emeritus professor at Princeton University. Kripke is considered one of the most important philosophers of the latter half of the 20th century. Since the 1960s, he has been a central figure in a number of fields related to mathematical and modal logic, philosophy of language and mathematics, metaphysics, epistemology, and recursion theory.
In physics, a Langevin equation is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Langevin equation typically are collective (macroscopic) variables changing only slowly in comparison to the other (microscopic) variables of the system. The fast (microscopic) variables are responsible for the stochastic nature of the Langevin equation. One application is to Brownian motion, which models the fluctuating motion of a small particle in a fluid.
Modal logic is a kind of logic used to represent statements about necessity and possibility. It plays a major role in philosophy and related fields as a tool for understanding concepts such as knowledge, obligation, and causation. For instance, in epistemic modal logic, the formula can be used to represent the statement that is known. In deontic modal logic, that same formula can represent that is a moral obligation.
The Drude model of electrical conduction was proposed in 1900 by Paul Drude to explain the transport properties of electrons in materials. Basically, Ohm's law was well established and stated that the current J and voltage V driving the current are related to the resistance R of the material. The inverse of the resistance is known as the conductance. When we consider a metal of unit length and unit cross sectional area, the conductance is known as the conductivity, which is the inverse of resistivity. The Drude model attempts to explain the resistivity of a conductor in terms of the scattering of electrons by the relatively immobile ions in the metal that act like obstructions to the flow of electrons.
In mathematical logic, a superintuitionistic logic is a propositional logic extending intuitionistic logic. Classical logic is the strongest consistent superintuitionistic logic; thus, consistent superintuitionistic logics are called intermediate logics.
Kripke semantics is a formal semantics for non-classical logic systems created in the late 1950s and early 1960s by Saul Kripke and André Joyal. It was first conceived for modal logics, and later adapted to intuitionistic logic and other non-classical systems. The development of Kripke semantics was a breakthrough in the theory of non-classical logics, because the model theory of such logics was almost non-existent before Kripke.
In abstract algebra, an interior algebra is a certain type of algebraic structure that encodes the idea of the topological interior of a set. Interior algebras are to topology and the modal logic S4 what Boolean algebras are to set theory and ordinary propositional logic. Interior algebras form a variety of modal algebras.
In logic, a rule of inference is admissible in a formal system if the set of theorems of the system does not change when that rule is added to the existing rules of the system. In other words, every formula that can be derived using that rule is already derivable without that rule, so, in a sense, it is redundant. The concept of an admissible rule was introduced by Paul Lorenzen (1955).
In electromagnetism, charge density is the amount of electric charge per unit length, surface area, or volume. Volume charge density is the quantity of charge per unit volume, measured in the SI system in coulombs per cubic meter (C⋅m−3), at any point in a volume. Surface charge density (σ) is the quantity of charge per unit area, measured in coulombs per square meter (C⋅m−2), at any point on a surface charge distribution on a two dimensional surface. Linear charge density (λ) is the quantity of charge per unit length, measured in coulombs per meter (C⋅m−1), at any point on a line charge distribution. Charge density can be either positive or negative, since electric charge can be either positive or negative.
The Jaynes–Cummings model is a theoretical model in quantum optics. It describes the system of a two-level atom interacting with a quantized mode of an optical cavity, with or without the presence of light. It was originally developed to study the interaction of atoms with the quantized electromagnetic field in order to investigate the phenomena of spontaneous emission and absorption of photons in a cavity.
In logic, general frames are Kripke frames with an additional structure, which are used to model modal and intermediate logics. The general frame semantics combines the main virtues of Kripke semantics and algebraic semantics: it shares the transparent geometrical insight of the former, and robust completeness of the latter.
In quantum mechanics, the expectation value is the probabilistic expected value of the result (measurement) of an experiment. It can be thought of as an average of all the possible outcomes of a measurement as weighted by their likelihood, and as such it is not the most probable value of a measurement; indeed the expectation value may have zero probability of occurring. It is a fundamental concept in all areas of quantum physics.
In mathematics – specifically, in stochastic analysis – an Itô diffusion is a solution to a specific type of stochastic differential equation. That equation is similar to the Langevin equation used in physics to describe the Brownian motion of a particle subjected to a potential in a viscous fluid. Itô diffusions are named after the Japanese mathematician Kiyosi Itô.
In quantum mechanics, and especially quantum information theory, the purity of a normalized quantum state is a scalar defined as
An electric dipole transition is the dominant effect of an interaction of an electron in an atom with the electromagnetic field.
The min-entropy, in information theory, is the smallest of the Rényi family of entropies, corresponding to the most conservative way of measuring the unpredictability of a set of outcomes, as the negative logarithm of the probability of the most likely outcome. The various Rényi entropies are all equal for a uniform distribution, but measure the unpredictability of a nonuniform distribution in different ways. The min-entropy is never greater than the ordinary or Shannon entropy and that in turn is never greater than the Hartley or max-entropy, defined as the logarithm of the number of outcomes with nonzero probability.
Generalized relative entropy is a measure of dissimilarity between two quantum states. It is a "one-shot" analogue of quantum relative entropy and shares many properties of the latter quantity.
In statistics, functional correlation is a dimensionality reduction technique used to quantify the correlation and dependence between two variables when the data is functional. Several approaches have been developed to quantify the relation between two functional variables.
In this article spherical functions are replaced by polynomials that have been well known in electrostatics since the time of Maxwell and associated with multipole moments. In physics, dipole and quadrupole moments typically appear because fundamental concepts of physics are associated precisely with them. Dipole and quadrupole moments are: