Dimension theorem for vector spaces

Last updated

In mathematics, the dimension theorem for vector spaces states that all bases of a vector space have equally many elements. This number of elements may be finite or infinite (in the latter case, it is a cardinal number), and defines the dimension of the vector space.

Contents

Formally, the dimension theorem for vector spaces states that:

Given a vector space V, any two bases have the same cardinality.

As a basis is a generating set that is linearly independent, the dimension theorem is a consequence of the following theorem, which is also useful:

In a vector space V, if G is a generating set, and I is a linearly independent set, then the cardinality of I is not larger than the cardinality of G.

In particular if V is finitely generated, then all its bases are finite and have the same number of elements.

While the proof of the existence of a basis for any vector space in the general case requires Zorn's lemma and is in fact equivalent to the axiom of choice, the uniqueness of the cardinality of the basis requires only the ultrafilter lemma, [1] which is strictly weaker (the proof given below, however, assumes trichotomy, i.e., that all cardinal numbers are comparable, a statement which is also equivalent to the axiom of choice). The theorem can be generalized to arbitrary R-modules for rings R having invariant basis number.

In the finitely generated case the proof uses only elementary arguments of algebra, and does not require the axiom of choice nor its weaker variants.

Proof

Let V be a vector space, {ai: iI} be a linearly independent set of elements of V, and {bj: jJ} be a generating set. One has to prove that the cardinality of I is not larger than that of J.

If J is finite, this results from the Steinitz exchange lemma. (Indeed, the Steinitz exchange lemma implies every finite subset of I has cardinality not larger than that of J, hence I is finite with cardinality not larger than that of J.) If J is finite, a proof based on matrix theory is also possible. [2]

Assume that J is infinite. If I is finite, there is nothing to prove. Thus, we may assume that I is also infinite. Let us suppose that the cardinality of I is larger than that of J. [note 1] We have to prove that this leads to a contradiction.

By Zorn's lemma, every linearly independent set is contained in a maximal linearly independent set K. This maximality implies that K spans V and is therefore a basis (the maximality implies that every element of V is linearly dependent from the elements of K, and therefore is a linear combination of elements of K). As the cardinality of K is greater than or equal to the cardinality of I, one may replace {ai: iI} with K, that is, one may suppose, without loss of generality, that {ai: iI} is a basis.

Thus, every bj can be written as a finite sum

where is a finite subset of As J is infinite, has the same cardinality as J. [note 1] Therefore has cardinality smaller than that of I. So there is some which does not appear in any . The corresponding can be expressed as a finite linear combination of s, which in turn can be expressed as finite linear combination of s, not involving . Hence is linearly dependent on the other s, which provides the desired contradiction.

Kernel extension theorem for vector spaces

This application of the dimension theorem is sometimes itself called the dimension theorem. Let

T: UV

be a linear transformation. Then

dim(range(T)) + dim(ker(T)) = dim(U),

that is, the dimension of U is equal to the dimension of the transformation's range plus the dimension of the kernel. See rank–nullity theorem for a fuller discussion.

Notes

  1. 1 2 This uses the axiom of choice.

Related Research Articles

<span class="mw-page-title-main">Axiom of choice</span> Axiom of set theory

In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory equivalent to the statement that a Cartesian product of a collection of non-empty sets is non-empty. Informally put, the axiom of choice says that given any collection of sets, each containing at least one element, it is possible to construct a new set by choosing one element from each set, even if the collection is infinite. Formally, it states that for every indexed family of nonempty sets, there exists an indexed set such that for every . The axiom of choice was formulated in 1904 by Ernst Zermelo in order to formalize his proof of the well-ordering theorem.

<span class="mw-page-title-main">Basis (linear algebra)</span> Set of vectors used to define coordinates

In mathematics, a set B of vectors in a vector space V is called a basis if every element of V may be written in a unique way as a finite linear combination of elements of B. The coefficients of this linear combination are referred to as components or coordinates of the vector with respect to B. The elements of a basis are called basis vectors.

<span class="mw-page-title-main">Vector space</span> Algebraic structure in linear algebra

In mathematics and physics, a vector space is a set whose elements, often called vectors, may be added together and multiplied ("scaled") by numbers called scalars. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called vector axioms. Real vector space and complex vector space are kinds of vector spaces based on different kinds of scalars: real coordinate space or complex coordinate space.

In mathematics, the dimension of a vector space V is the cardinality of a basis of V over its base field. It is sometimes called Hamel dimension or algebraic dimension to distinguish it from other types of dimension.

<span class="mw-page-title-main">Zorn's lemma</span> Mathematical proposition equivalent to the axiom of choice

Zorn's lemma, also known as the Kuratowski–Zorn lemma, is a proposition of set theory. It states that a partially ordered set containing upper bounds for every chain necessarily contains at least one maximal element.

In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings.

In mathematics, Tychonoff's theorem states that the product of any collection of compact topological spaces is compact with respect to the product topology. The theorem is named after Andrey Nikolayevich Tikhonov, who proved it first in 1930 for powers of the closed unit interval and in 1935 stated the full theorem along with the remark that its proof was the same as for the special case. The earliest known published proof is contained in a 1935 article by Tychonoff, "Über einen Funktionenraum".

In mathematics, a free abelian group is an abelian group with a basis. Being an abelian group means that it is a set with an addition operation that is associative, commutative, and invertible. A basis, also called an integral basis, is a subset such that every element of the group can be uniquely expressed as an integer combination of finitely many basis elements. For instance the two-dimensional integer lattice forms a free abelian group, with coordinatewise addition as its operation, and with the two points (1,0) and (0,1) as its basis. Free abelian groups have properties which make them similar to vector spaces, and may equivalently be called free-modules, the free modules over the integers. Lattice theory studies free abelian subgroups of real vector spaces. In algebraic topology, free abelian groups are used to define chain groups, and in algebraic geometry they are used to define divisors.

In mathematics, a transcendental extension is a field extension such that there exists an element in the field that is transcendental over the field ; that is, an element that is not a root of any univariate polynomial with coefficients in . In other words, a transcendental extension is a field extension that is not algebraic. For example, are both transcendental extensions of

In mathematics, the Boolean prime ideal theorem states that ideals in a Boolean algebra can be extended to prime ideals. A variation of this statement for filters on sets is known as the ultrafilter lemma. Other theorems are obtained by considering different mathematical structures with appropriate notions of ideals, for example, rings and prime ideals, or distributive lattices and maximal ideals. This article focuses on prime ideal theorems from order theory.

In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring R may also be called a finite R-module, finite over R, or a module of finite type.

<span class="mw-page-title-main">Rank–nullity theorem</span> In linear algebra, relation between 3 dimensions

The rank–nullity theorem is a theorem in linear algebra, which asserts:

Pregeometry, and in full combinatorial pregeometry, are essentially synonyms for "matroid". They were introduced by Gian-Carlo Rota with the intention of providing a less "ineffably cacophonous" alternative term. Also, the term combinatorial geometry, sometimes abbreviated to geometry, was intended to replace "simple matroid". These terms are now infrequently used in the study of matroids.

This page lists some examples of vector spaces. See vector space for the definitions of terms used on this page. See also: dimension, basis.

In mathematics, more specifically abstract algebra and commutative algebra, Nakayama's lemma — also known as the Krull–Azumaya theorem — governs the interaction between the Jacobson radical of a ring and its finitely generated modules. Informally, the lemma immediately gives a precise sense in which finitely generated modules over a commutative ring behave like vector spaces over a field. It is an important tool in algebraic geometry, because it allows local data on algebraic varieties, in the form of modules over local rings, to be studied pointwise as vector spaces over the residue field of the ring.

In mathematics, linear maps form an important class of "simple" functions which preserve the algebraic structure of linear spaces and are often used as approximations to more general functions. If the spaces involved are also topological spaces, then it makes sense to ask whether all linear maps are continuous. It turns out that for maps defined on infinite-dimensional topological vector spaces, the answer is generally no: there exist discontinuous linear maps. If the domain of definition is complete, it is trickier; such maps can be proven to exist, but the proof relies on the axiom of choice and does not provide an explicit example.

In the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments. By contrast, the study of general operators on infinite-dimensional spaces often requires a genuinely different approach.

In mathematics, in the field of abstract algebra, the structure theorem for finitely generated modules over a principal ideal domain is a generalization of the fundamental theorem of finitely generated abelian groups and roughly states that finitely generated modules over a principal ideal domain (PID) can be uniquely decomposed in much the same way that integers have a prime factorization. The result provides a simple framework to understand various canonical form results for square matrices over fields.

In mathematics, the Vitali covering lemma is a combinatorial and geometric result commonly used in measure theory of Euclidean spaces. This lemma is an intermediate step, of independent interest, in the proof of the Vitali covering theorem. The covering theorem is credited to the Italian mathematician Giuseppe Vitali. The theorem states that it is possible to cover, up to a Lebesgue-negligible set, a given subset E of Rd by a disjoint family extracted from a Vitali covering of E.

<span class="mw-page-title-main">Ultrafilter on a set</span> Maximal proper filter

In the mathematical field of set theory, an ultrafilter on a set is a maximal filter on the set In other words, it is a collection of subsets of that satisfies the definition of a filter on and that is maximal with respect to inclusion, in the sense that there does not exist a strictly larger collection of subsets of that is also a filter. Equivalently, an ultrafilter on the set can also be characterized as a filter on with the property that for every subset of either or its complement belongs to the ultrafilter.

References

  1. Howard, P., Rubin, J.: "Consequences of the axiom of choice" - Mathematical Surveys and Monographs, vol 59 (1998) ISSN   0076-5376.
  2. Hoffman, K., Kunze, R., "Linear Algebra", 2nd ed., 1971, Prentice-Hall. (Theorem 4 of Chapter 2).