Line bundle

Last updated

In mathematics, a line bundle expresses the concept of a line that varies from point to point of a space. For example, a curve in the plane having a tangent line at each point determines a varying line: the tangent bundle is a way of organising these. More formally, in algebraic topology and differential topology, a line bundle is defined as a vector bundle of rank 1. [1]

Contents

Line bundles are specified by choosing a one-dimensional vector space for each point of the space in a continuous manner. In topological applications, this vector space is usually real or complex. The two cases display fundamentally different behavior because of the different topological properties of real and complex vector spaces: If the origin is removed from the real line, then the result is the set of 1×1 invertible real matrices, which is homotopy-equivalent to a discrete two-point space by contracting the positive and negative reals each to a point; whereas removing the origin from the complex plane yields the 1×1 invertible complex matrices, which have the homotopy type of a circle.

From the perspective of homotopy theory, a real line bundle therefore behaves much the same as a fiber bundle with a two-point fiber, that is, like a double cover. A special case of this is the orientable double cover of a differentiable manifold, where the corresponding line bundle is the determinant bundle of the tangent bundle (see below). The Möbius strip corresponds to a double cover of the circle (the θ → 2θ mapping) and by changing the fiber, can also be viewed as having a two-point fiber, the unit interval as a fiber, or the real line.

Complex line bundles are closely related to circle bundles. There are some celebrated ones, for example the Hopf fibrations of spheres to spheres.

In algebraic geometry, an invertible sheaf (i.e., locally free sheaf of rank one) is often called a line bundle.

Every line bundle arises from a divisor under the following conditions:

(I) If is a reduced and irreducible scheme, then every line bundle comes from a divisor.
(II) If is a projective scheme then the same statement holds.

The tautological bundle on projective space

One of the most important line bundles in algebraic geometry is the tautological line bundle on projective space. The projectivization of a vector space over a field is defined to be the quotient of by the action of the multiplicative group . Each point of therefore corresponds to a copy of , and these copies of can be assembled into a -bundle over . But differs from only by a single point, and by adjoining that point to each fiber, we get a line bundle on . This line bundle is called the tautological line bundle. This line bundle is sometimes denoted since it corresponds to the dual of the Serre twisting sheaf .

Maps to projective space

Suppose that is a space and that is a line bundle on . A global section of is a function such that if is the natural projection, then . In a small neighborhood in in which is trivial, the total space of the line bundle is the product of and the underlying field , and the section restricts to a function . However, the values of depend on the choice of trivialization, and so they are determined only up to multiplication by a nowhere-vanishing function.

Global sections determine maps to projective spaces in the following way: Choosing not all zero points in a fiber of chooses a fiber of the tautological line bundle on , so choosing non-simultaneously vanishing global sections of determines a map from into projective space . This map sends the fibers of to the fibers of the dual of the tautological bundle. More specifically, suppose that are global sections of . In a small neighborhood in , these sections determine -valued functions on whose values depend on the choice of trivialization. However, they are determined up to simultaneous multiplication by a non-zero function, so their ratios are well-defined. That is, over a point , the values are not well-defined because a change in trivialization will multiply them each by a non-zero constant λ. But it will multiply them by the same constant λ, so the homogeneous coordinates are well-defined as long as the sections do not simultaneously vanish at . Therefore, if the sections never simultaneously vanish, they determine a form which gives a map from to , and the pullback of the dual of the tautological bundle under this map is . In this way, projective space acquires a universal property.

The universal way to determine a map to projective space is to map to the projectivization of the vector space of all sections of . In the topological case, there is a non-vanishing section at every point which can be constructed using a bump function which vanishes outside a small neighborhood of the point. Because of this, the resulting map is defined everywhere. However, the codomain is usually far, far too big to be useful. The opposite is true in the algebraic and holomorphic settings. Here the space of global sections is often finite dimensional, but there may not be any non-vanishing global sections at a given point. (As in the case when this procedure constructs a Lefschetz pencil.) In fact, it is possible for a bundle to have no non-zero global sections at all; this is the case for the tautological line bundle. When the line bundle is sufficiently ample this construction verifies the Kodaira embedding theorem.

Determinant bundles

In general if is a vector bundle on a space , with constant fibre dimension , the -th exterior power of taken fibre-by-fibre is a line bundle, called the determinant line bundle. This construction is in particular applied to the cotangent bundle of a smooth manifold. The resulting determinant bundle is responsible for the phenomenon of tensor densities, in the sense that for an orientable manifold it has a nonvanishing global section, and its tensor powers with any real exponent may be defined and used to 'twist' any vector bundle by tensor product.

The same construction (taking the top exterior power) applies to a finitely generated projective module over a Noetherian domain and the resulting invertible module is called the determinant module of .

Characteristic classes, universal bundles and classifying spaces

The first Stiefel–Whitney class classifies smooth real line bundles; in particular, the collection of (equivalence classes of) real line bundles are in correspondence with elements of the first cohomology with coefficients; this correspondence is in fact an isomorphism of abelian groups (the group operations being tensor product of line bundles and the usual addition on cohomology). Analogously, the first Chern class classifies smooth complex line bundles on a space, and the group of line bundles is isomorphic to the second cohomology class with integer coefficients. However, bundles can have equivalent smooth structures (and thus the same first Chern class) but different holomorphic structures. The Chern class statements are easily proven using the exponential sequence of sheaves on the manifold.

One can more generally view the classification problem from a homotopy-theoretic point of view. There is a universal bundle for real line bundles, and a universal bundle for complex line bundles. According to general theory about classifying spaces, the heuristic is to look for contractible spaces on which there are group actions of the respective groups and , that are free actions. Those spaces can serve as the universal principal bundles, and the quotients for the actions as the classifying spaces . In these cases we can find those explicitly, in the infinite-dimensional analogues of real and complex projective space.

Therefore the classifying space is of the homotopy type of , the real projective space given by an infinite sequence of homogeneous coordinates. It carries the universal real line bundle; in terms of homotopy theory that means that any real line bundle on a CW complex determines a classifying map from to , making a bundle isomorphic to the pullback of the universal bundle. This classifying map can be used to define the Stiefel-Whitney class of , in the first cohomology of with coefficients, from a standard class on .

In an analogous way, the complex projective space carries a universal complex line bundle. In this case classifying maps give rise to the first Chern class of , in (integral cohomology).

There is a further, analogous theory with quaternionic (real dimension four) line bundles. This gives rise to one of the Pontryagin classes, in real four-dimensional cohomology.

In this way foundational cases for the theory of characteristic classes depend only on line bundles. According to a general splitting principle this can determine the rest of the theory (if not explicitly).

There are theories of holomorphic line bundles on complex manifolds, and invertible sheaves in algebraic geometry, that work out a line bundle theory in those areas.

See also


Notes

  1. Hartshorne (1975). Algebraic Geometry, Arcata 1974. p. 7.

Related Research Articles

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

<span class="mw-page-title-main">Vector bundle</span> Mathematical parametrization of vector spaces by another space

In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space : to every point of the space we associate a vector space in such a way that these vector spaces fit together to form another space of the same kind as , which is then called a vector bundle over .

In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since become fundamental concepts in many branches of mathematics and physics, such as string theory, Chern–Simons theory, knot theory, and Gromov–Witten invariants. Chern classes were introduced by Shiing-Shen Chern.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.

<span class="mw-page-title-main">Complex projective space</span> Mathematical concept

In mathematics, complex projective space is the projective space with respect to the field of complex numbers. By analogy, whereas the points of a real projective space label the lines through the origin of a real Euclidean space, the points of a complex projective space label the complex lines through the origin of a complex Euclidean space (see below for an intuitive account). Formally, a complex projective space is the space of complex lines through the origin of an (n+1)-dimensional complex vector space. The space is denoted variously as P(Cn+1), Pn(C) or CPn. When n = 1, the complex projective space CP1 is the Riemann sphere, and when n = 2, CP2 is the complex projective plane (see there for a more elementary discussion).

In mathematics, a gerbe is a construct in homological algebra and topology. Gerbes were introduced by Jean Giraud following ideas of Alexandre Grothendieck as a tool for non-commutative cohomology in degree 2. They can be seen as an analogue of fibre bundles where the fibre is the classifying stack of a group. Gerbes provide a convenient, if highly abstract, language for dealing with many types of deformation questions especially in modern algebraic geometry. In addition, special cases of gerbes have been used more recently in differential topology and differential geometry to give alternative descriptions to certain cohomology classes and additional structures attached to them.

In mathematics, in particular in algebraic topology and differential geometry, the Stiefel–Whitney classes are a set of topological invariants of a real vector bundle that describe the obstructions to constructing everywhere independent sets of sections of the vector bundle. Stiefel–Whitney classes are indexed from 0 to n, where n is the rank of the vector bundle. If the Stiefel–Whitney class of index i is nonzero, then there cannot exist everywhere linearly independent sections of the vector bundle. A nonzero nth Stiefel–Whitney class indicates that every section of the bundle must vanish at some point. A nonzero first Stiefel–Whitney class indicates that the vector bundle is not orientable. For example, the first Stiefel–Whitney class of the Möbius strip, as a line bundle over the circle, is not zero, whereas the first Stiefel–Whitney class of the trivial line bundle over the circle, , is zero.

In mathematics, specifically in homotopy theory, a classifying spaceBG of a topological group G is the quotient of a weakly contractible space EG by a proper free action of G. It has the property that any G principal bundle over a paracompact manifold is isomorphic to a pullback of the principal bundle . As explained later, this means that classifying spaces represent a set-valued functor on the homotopy category of topological spaces. The term classifying space can also be used for spaces that represent a set-valued functor on the category of topological spaces, such as Sierpiński space. This notion is generalized by the notion of classifying topos. However, the rest of this article discusses the more commonly used notion of classifying space up to homotopy.

In mathematics, real projective space, denoted or is the topological space of lines passing through the origin 0 in the real space It is a compact, smooth manifold of dimension n, and is a special case of a Grassmannian space.

In mathematics, a distinctive feature of algebraic geometry is that some line bundles on a projective variety can be considered "positive", while others are "negative". The most important notion of positivity is that of an ample line bundle, although there are several related classes of line bundles. Roughly speaking, positivity properties of a line bundle are related to having many global sections. Understanding the ample line bundles on a given variety amounts to understanding the different ways of mapping into projective spaces. In view of the correspondence between line bundles and divisors, there is an equivalent notion of an ample divisor.

In mathematics, the classifying space for the unitary group U(n) is a space BU(n) together with a universal bundle EU(n) such that any hermitian bundle on a paracompact space X is the pull-back of EU(n) by a map X → BU(n) unique up to homotopy.

In mathematics, topological K-theory is a branch of algebraic topology. It was founded to study vector bundles on topological spaces, by means of ideas now recognised as (general) K-theory that were introduced by Alexander Grothendieck. The early work on topological K-theory is due to Michael Atiyah and Friedrich Hirzebruch.

In mathematics, the tautological bundle is a vector bundle occurring over a Grassmannian in a natural tautological way: for a Grassmannian of -dimensional subspaces of , given a point in the Grassmannian corresponding to a -dimensional vector subspace , the fiber over is the subspace itself. In the case of projective space the tautological bundle is known as the tautological line bundle.

In mathematics, specifically in algebraic topology, the Euler class is a characteristic class of oriented, real vector bundles. Like other characteristic classes, it measures how "twisted" the vector bundle is. In the case of the tangent bundle of a smooth manifold, it generalizes the classical notion of Euler characteristic. It is named after Leonhard Euler because of this.

In mathematics, equivariant cohomology is a cohomology theory from algebraic topology which applies to topological spaces with a group action. It can be viewed as a common generalization of group cohomology and an ordinary cohomology theory. Specifically, the equivariant cohomology ring of a space with action of a topological group is defined as the ordinary cohomology ring with coefficient ring of the homotopy quotient :

In mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold X such that the total space E is a complex manifold and the projection map π : EX is holomorphic. Fundamental examples are the holomorphic tangent bundle of a complex manifold, and its dual, the holomorphic cotangent bundle. A holomorphic line bundle is a rank one holomorphic vector bundle.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaf cohomology is a technique for producing functions with specified properties. Many geometric questions can be formulated as questions about the existence of sections of line bundles or of more general coherent sheaves; such sections can be viewed as generalized functions. Cohomology provides computable tools for producing sections, or explaining why they do not exist. It also provides invariants to distinguish one algebraic variety from another.

In mathematics, a projective bundle is a fiber bundle whose fibers are projective spaces.

This is a glossary of algebraic geometry.

This is a glossary of properties and concepts in algebraic topology in mathematics.

References