I-bundle

Last updated
A Mobius band is a non-orientable I-bundle. The dark line is the base for a set of transversal lines that are homeomorphic to the fiber and that each touch the edge of the band twice. MobiusF.PNG
A Möbius band is a non-orientable I-bundle. The dark line is the base for a set of transversal lines that are homeomorphic to the fiber and that each touch the edge of the band twice.
An annulus is an orientable I-bundle. This example is embedded in 3-space with an even number of twists Hopf band wikipedia.png
An annulus is an orientable I-bundle. This example is embedded in 3-space with an even number of twists
This image represents the twisted I-bundle over the 2-torus, which is also fibered as a Mobius strip times the circle. So, this space is also a circle bundle MxS1.PNG
This image represents the twisted I-bundle over the 2-torus, which is also fibered as a Möbius strip times the circle. So, this space is also a circle bundle

In mathematics, an I-bundle is a fiber bundle whose fiber is an interval and whose base is a manifold. Any kind of interval, open, closed, semi-open, semi-closed, open-bounded, compact, even rays, can be the fiber. An I-bundle is said to be twisted if it is not trivial.

Two simple examples of I-bundles are the annulus and the Möbius band, the only two possible I-bundles over the circle . The annulus is a trivial or untwisted bundle because it corresponds to the Cartesian product , and the Möbius band is a non-trivial or twisted bundle. Both bundles are 2-manifolds, but the annulus is an orientable manifold while the Möbius band is a non-orientable manifold.

Curiously, there are only two kinds of I-bundles when the base manifold is any surface but the Klein bottle . That surface has three I-bundles: the trivial bundle and two twisted bundles.

Together with the Seifert fiber spaces, I-bundles are fundamental elementary building blocks for the description of three-dimensional spaces. These observations are simple well known facts on elementary 3-manifolds.

Line bundles are both I-bundles and vector bundles of rank one. When considering I-bundles, one is interested mostly in their topological properties and not their possible vector properties, as one might be for line bundles.

Related Research Articles

<span class="mw-page-title-main">Klein bottle</span> Non-orientable mathematical surface

In mathematics, the Klein bottle is an example of a non-orientable surface; that is, informally, a one-sided surface which, if traveled upon, could be followed back to the point of origin while flipping the traveler upside down. More formally, the Klein bottle is a two-dimensional manifold on which one cannot define a normal vector at each point that varies continuously over the whole manifold. Other related non-orientable surfaces include the Möbius strip and the real projective plane. While a Möbius strip is a surface with a boundary, a Klein bottle has no boundary. For comparison, a sphere is an orientable surface with no boundary.

<span class="mw-page-title-main">Orientability</span> Possibility of a consistent definition of "clockwise" in a mathematical space

In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "anticlockwise". A space is orientable if such a consistent definition exists. In this case, there are two possible definitions, and a choice between them is an orientation of the space. Real vector spaces, Euclidean spaces, and spheres are orientable. A space is non-orientable if "clockwise" is changed into "counterclockwise" after running through some loops in it, and coming back to the starting point. This means that a geometric shape, such as , that moves continuously along such a loop is changed into its own mirror image . A Möbius strip is an example of a non-orientable space.

<span class="mw-page-title-main">Tangent bundle</span> Tangent spaces of a manifold

In differential geometry, the tangent bundle of a differentiable manifold is a manifold which assembles all the tangent vectors in . As a set, it is given by the disjoint union of the tangent spaces of . That is,

In mathematics and physics, a tensor field assigns a tensor to each point of a mathematical space. Tensor fields are used in differential geometry, algebraic geometry, general relativity, in the analysis of stress and strain in materials, and in numerous applications in the physical sciences. As a tensor is a generalization of a scalar and a vector, a tensor field is a generalization of a scalar field or vector field that assigns, respectively, a scalar or vector to each point of space. If a tensor A is defined on a vector fields set X(M) over a module M, we call A a tensor field on M.

<span class="mw-page-title-main">Vector bundle</span> Mathematical parametrization of vector spaces by another space

In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space : to every point of the space we associate a vector space in such a way that these vector spaces fit together to form another space of the same kind as , which is then called a vector bundle over .

<span class="mw-page-title-main">Fiber bundle</span> Continuous surjection satisfying a local triviality condition

In mathematics, and particularly topology, a fiber bundle is a space that is locally a product space, but globally may have a different topological structure. Specifically, the similarity between a space and a product space is defined using a continuous surjective map, that in small regions of behaves just like a projection from corresponding regions of to The map called the projection or submersion of the bundle, is regarded as part of the structure of the bundle. The space is known as the total space of the fiber bundle, as the base space, and the fiber.

In mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product of a space with a group . In the same way as with the Cartesian product, a principal bundle is equipped with

  1. An action of on , analogous to for a product space.
  2. A projection onto . For a product space, this is just the projection onto the first factor, .

In mathematics, a line bundle expresses the concept of a line that varies from point to point of a space. For example, a curve in the plane having a tangent line at each point determines a varying line: the tangent bundle is a way of organising these. More formally, in algebraic topology and differential topology, a line bundle is defined as a vector bundle of rank 1.

<span class="mw-page-title-main">Section (fiber bundle)</span>

In the mathematical field of topology, a section of a fiber bundle is a continuous right inverse of the projection function . In other words, if is a fiber bundle over a base space, :

<span class="mw-page-title-main">Connected sum</span> Way to join two given mathematical manifolds together

In mathematics, specifically in topology, the operation of connected sum is a geometric modification on manifolds. Its effect is to join two given manifolds together near a chosen point on each. This construction plays a key role in the classification of closed surfaces.

This is a glossary of terms specific to differential geometry and differential topology. The following three glossaries are closely related:

<span class="mw-page-title-main">Dehn twist</span>

In geometric topology, a branch of mathematics, a Dehn twist is a certain type of self-homeomorphism of a surface.

In mathematics, in particular in algebraic topology and differential geometry, the Stiefel–Whitney classes are a set of topological invariants of a real vector bundle that describe the obstructions to constructing everywhere independent sets of sections of the vector bundle. Stiefel–Whitney classes are indexed from 0 to n, where n is the rank of the vector bundle. If the Stiefel–Whitney class of index i is nonzero, then there cannot exist everywhere linearly independent sections of the vector bundle. A nonzero nth Stiefel–Whitney class indicates that every section of the bundle must vanish at some point. A nonzero first Stiefel–Whitney class indicates that the vector bundle is not orientable. For example, the first Stiefel–Whitney class of the Möbius strip, as a line bundle over the circle, is not zero, whereas the first Stiefel–Whitney class of the trivial line bundle over the circle, , is zero.

<span class="mw-page-title-main">3-manifold</span> Mathematical space

In mathematics, a 3-manifold is a topological space that locally looks like a three-dimensional Euclidean space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below.

A Seifert fiber space is a 3-manifold together with a decomposition as a disjoint union of circles. In other words, it is a -bundle over a 2-dimensional orbifold. Many 3-manifolds are Seifert fiber spaces, and they account for all compact oriented manifolds in 6 of the 8 Thurston geometries of the geometrization conjecture.

<span class="mw-page-title-main">Pair of pants (mathematics)</span> Three holed sphere

In mathematics, a pair of pants is a surface which is homeomorphic to the three-holed sphere. The name comes from considering one of the removed disks as the waist and the two others as the cuffs of a pair of pants.

In the field of mathematics known as differential geometry, a generalized complex structure is a property of a differential manifold that includes as special cases a complex structure and a symplectic structure. Generalized complex structures were introduced by Nigel Hitchin in 2002 and further developed by his students Marco Gualtieri and Gil Cavalcanti.

<span class="mw-page-title-main">Immersion (mathematics)</span> Differentiable function whose derivative is everywhere injective

In mathematics, an immersion is a differentiable function between differentiable manifolds whose differential pushforward is everywhere injective. Explicitly, f : MN is an immersion if

In mathematics, a Riemannian manifold is said to be flat if its Riemann curvature tensor is everywhere zero. Intuitively, a flat manifold is one that "locally looks like" Euclidean space in terms of distances and angles, e.g. the interior angles of a triangle add up to 180°.

References