Conformal group

Last updated

In mathematics, the conformal group of an inner product space is the group of transformations from the space to itself that preserve angles. More formally, it is the group of transformations that preserve the conformal geometry of the space.

Contents

Several specific conformal groups are particularly important:

For a definite quadratic form, the conformal orthogonal group is equal to the orthogonal group times the group of dilations.

All conformal groups are Lie groups.

Angle analysis

In Euclidean geometry one can expect the standard circular angle to be characteristic, but in pseudo-Euclidean space there is also the hyperbolic angle. In the study of special relativity the various frames of reference, for varying velocity with respect to a rest frame, are related by rapidity, a hyperbolic angle. One way to describe a Lorentz boost is as a hyperbolic rotation which preserves the differential angle between rapidities. Thus, they are conformal transformations with respect to the hyperbolic angle.

A method to generate an appropriate conformal group is to mimic the steps of the Möbius group as the conformal group of the ordinary complex plane. Pseudo-Euclidean geometry is supported by alternative complex planes where points are split-complex numbers or dual numbers. Just as the Möbius group requires the Riemann sphere, a compact space, for a complete description, so the alternative complex planes require compactification for complete description of conformal mapping. Nevertheless, the conformal group in each case is given by linear fractional transformations on the appropriate plane. [2]

Mathematical definition

Given a (Pseudo-)Riemannian manifold with conformal class , the conformal group is the group of conformal maps from to itself.

More concretely, this is the group of angle-preserving smooth maps from to itself. However, when the signature of is not definite, the 'angle' is a hyper-angle which is potentially infinite.

For Pseudo-Euclidean space, the definition is slightly different. [3] is the conformal group of the manifold arising from conformal compactification of the pseudo-Euclidean space (sometimes identified with after a choice of orthonormal basis). This conformal compactification can be defined using , considered as a submanifold of null points in by the inclusion (where is considered as a single spacetime vector). The conformal compactification is then with 'antipodal points' identified. This happens by projectivising[ check spelling ] the space . If is the conformal compactification, then . In particular, this group includes inversion of , which is not a map from to itself as it maps the origin to infinity, and maps infinity to the origin.

Conf(p,q)

For Pseudo-Euclidean space , the Lie algebra of the conformal group is given by the basis with the following commutation relations: [4]

and with all other brackets vanishing. Here is the Minkowski metric.

In fact, this Lie algebra is isomorphic to the Lie algebra of the Lorentz group with one more space and one more time dimension, that is, . It can be easily checked that the dimensions agree. To exhibit an explicit isomorphism, define

It can then be shown that the generators with obey the Lorentz algebra relations with metric .

Conformal group in two spacetime dimensions

For two-dimensional Euclidean space or one-plus-one dimensional spacetime, the space of conformal symmetries is much larger. In physics it is sometimes said the conformal group is infinite-dimensional, but this is not quite correct as while the Lie algebra of local symmetries is infinite dimensional, these do not necessarily extend to a Lie group of well-defined global symmetries.

For spacetime dimension , the local conformal symmetries all extend to global symmetries. For Euclidean space, after changing to a complex coordinate local conformal symmetries are described by the infinite dimensional space of vector fields of the form

Hence the local conformal symmetries of 2d Euclidean space is the infinite-dimensional Witt algebra.

Conformal group of spacetime

In 1908, Harry Bateman and Ebenezer Cunningham, two young researchers at University of Liverpool, broached the idea of a conformal group of spacetime [5] [6] [7] They argued that the kinematics groups are perforce conformal as they preserve the quadratic form of spacetime and are akin to orthogonal transformations, though with respect to an isotropic quadratic form. The liberties of an electromagnetic field are not confined to kinematic motions, but rather are required only to be locally proportional to a transformation preserving the quadratic form. Harry Bateman's paper in 1910 studied the Jacobian matrix of a transformation that preserves the light cone and showed it had the conformal property (proportional to a form preserver). [8] Bateman and Cunningham showed that this conformal group is "the largest group of transformations leaving Maxwell’s equations structurally invariant." [9] The conformal group of spacetime has been denoted C(1,3) [10]

Isaak Yaglom has contributed to the mathematics of spacetime conformal transformations in split-complex and dual numbers. [11] Since split-complex numbers and dual numbers form rings, not fields, the linear fractional transformations require a projective line over a ring to be bijective mappings.

It has been traditional since the work of Ludwik Silberstein in 1914 to use the ring of biquaternions to represent the Lorentz group. For the spacetime conformal group, it is sufficient to consider linear fractional transformations on the projective line over that ring. Elements of the spacetime conformal group were called spherical wave transformations by Bateman. The particulars of the spacetime quadratic form study have been absorbed into Lie sphere geometry.

Commenting on the continued interest shown in physical science, A. O. Barut wrote in 1985, "One of the prime reasons for the interest in the conformal group is that it is perhaps the most important of the larger groups containing the Poincaré group." [12]

See also

Related Research Articles

<span class="mw-page-title-main">Lorentz transformation</span> Family of linear transformations

In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-12 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.

<span class="mw-page-title-main">Poincaré group</span> Group of flat spacetime symmetries

The Poincaré group, named after Henri Poincaré (1906), was first defined by Hermann Minkowski (1908) as the group of Minkowski spacetime isometries. It is a ten-dimensional non-abelian Lie group that is of importance as a model in our understanding of the most basic fundamentals of physics.

<span class="mw-page-title-main">Minkowski space</span> Spacetime used in theory of relativity

In mathematical physics, Minkowski space combines inertial space and time manifolds with a non-inertial reference frame of space and time into a four-dimensional model relating a position to the field.

<span class="mw-page-title-main">Lorentz group</span> Lie group of Lorentz transformations

In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz.

<span class="mw-page-title-main">Anti-de Sitter space</span> Maximally symmetric Lorentzian manifold with a negative cosmological constant

In mathematics and physics, n-dimensional anti-de Sitter space (AdSn) is a maximally symmetric Lorentzian manifold with constant negative scalar curvature. Anti-de Sitter space and de Sitter space are named after Willem de Sitter (1872–1934), professor of astronomy at Leiden University and director of the Leiden Observatory. Willem de Sitter and Albert Einstein worked together closely in Leiden in the 1920s on the spacetime structure of the universe. Paul Dirac was the first person to rigorously explore anti-de Sitter space, doing so in 1963.

A conformal field theory (CFT) is a quantum field theory that is invariant under conformal transformations. In two dimensions, there is an infinite-dimensional algebra of local conformal transformations, and conformal field theories can sometimes be exactly solved or classified.

In mathematical physics, the conformal symmetry of spacetime is expressed by an extension of the Poincaré group, known as the conformal group. The extension includes special conformal transformations and dilations. In three spatial plus one time dimensions, conformal symmetry has 15 degrees of freedom: ten for the Poincaré group, four for special conformal transformations, and one for a dilation.

In mathematics, a Killing vector field, named after Wilhelm Killing, is a vector field on a Riemannian manifold that preserves the metric. Killing fields are the infinitesimal generators of isometries; that is, flows generated by Killing fields are continuous isometries of the manifold. More simply, the flow generates a symmetry, in the sense that moving each point of an object the same distance in the direction of the Killing vector will not distort distances on the object.

In general relativity, the metric tensor is the fundamental object of study. The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.

In conformal geometry, a conformal Killing vector field on a manifold of dimension n with (pseudo) Riemannian metric , is a vector field whose flow defines conformal transformations, that is, preserve up to scale and preserve the conformal structure. Several equivalent formulations, called the conformal Killing equation, exist in terms of the Lie derivative of the flow e.g. for some function on the manifold. For there are a finite number of solutions, specifying the conformal symmetry of that space, but in two dimensions, there is an infinity of solutions. The name Killing refers to Wilhelm Killing, who first investigated Killing vector fields.

In theoretical physics, the superconformal algebra is a graded Lie algebra or superalgebra that combines the conformal algebra and supersymmetry. In two dimensions, the superconformal algebra is infinite-dimensional. In higher dimensions, superconformal algebras are finite-dimensional and generate the superconformal group.

In theoretical physics, a primary field, also called a primary operator, or simply a primary, is a local operator in a conformal field theory which is annihilated by the part of the conformal algebra consisting of the lowering generators. From the representation theory point of view, a primary is the lowest dimension operator in a given representation of the conformal algebra. All other operators in a representation are called descendants; they can be obtained by acting on the primary with the raising generators.

In the theory of general relativity, linearized gravity is the application of perturbation theory to the metric tensor that describes the geometry of spacetime. As a consequence, linearized gravity is an effective method for modeling the effects of gravity when the gravitational field is weak. The usage of linearized gravity is integral to the study of gravitational waves and weak-field gravitational lensing.

In mathematical physics, the gamma matrices, also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra It is also possible to define higher-dimensional gamma matrices. When interpreted as the matrices of the action of a set of orthogonal basis vectors for contravariant vectors in Minkowski space, the column vectors on which the matrices act become a space of spinors, on which the Clifford algebra of spacetime acts. This in turn makes it possible to represent infinitesimal spatial rotations and Lorentz boosts. Spinors facilitate spacetime computations in general, and in particular are fundamental to the Dirac equation for relativistic spin particles. Gamma matrices were introduced by Paul Dirac in 1928.

<span class="mw-page-title-main">BPST instanton</span> Type of Yang–Mills instanton

In theoretical physics, the BPST instanton is the instanton with winding number 1 found by Alexander Belavin, Alexander Polyakov, Albert Schwarz and Yu. S. Tyupkin. It is a classical solution to the equations of motion of SU(2) Yang–Mills theory in Euclidean space-time, meaning it describes a transition between two different topological vacua of the theory. It was originally hoped to open the path to solving the problem of confinement, especially since Polyakov had proven in 1987 that instantons are the cause of confinement in three-dimensional compact-QED. This hope was not realized, however.

In mathematical physics, the Dirac algebra is the Clifford algebra . This was introduced by the mathematical physicist P. A. M. Dirac in 1928 in developing the Dirac equation for spin-1/2 particles with a matrix representation of the gamma matrices, which represent the generators of the algebra.

In physics and particularly in particle physics, a multiplet is the state space for 'internal' degrees of freedom of a particle, that is, degrees of freedom associated to a particle itself, as opposed to 'external' degrees of freedom such as the particle's position in space. Examples of such degrees of freedom are the spin state of a particle in quantum mechanics, or the color, isospin and hypercharge state of particles in the Standard model of particle physics. Formally, we describe this state space by a vector space which carries the action of a group of continuous symmetries.

<span class="mw-page-title-main">Dirac equation in curved spacetime</span> Generalization of the Dirac equation

In mathematical physics, the Dirac equation in curved spacetime is a generalization of the Dirac equation from flat spacetime to curved spacetime, a general Lorentzian manifold.

<span class="mw-page-title-main">Symmetry in quantum mechanics</span> Properties underlying modern physics

Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems. In application, understanding symmetries can also provide insights on the eigenstates that can be expected. For example, the existence of degenerate states can be inferred by the presence of non commuting symmetry operators or that the non degenerate states are also eigenvectors of symmetry operators.

References

  1. Jayme Vaz, Jr.; Roldão da Rocha, Jr. (2016). An Introduction to Clifford Algebras and Spinors. Oxford University Press. p. 140. ISBN   9780191085789.
  2. Tsurusaburo Takasu (1941) "Gemeinsame Behandlungsweise der elliptischen konformen, hyperbolischen konformen und parabolischen konformen Differentialgeometrie", 2, Proceedings of the Imperial Academy 17(8): 330–8, link from Project Euclid, MR 14282
  3. Schottenloher, Martin (2008). A Mathematical Introduction to Conformal Field Theory (PDF). Springer Science & Business Media. p. 23. ISBN   978-3540686255.
  4. Di Francesco, Philippe; Mathieu, Pierre; Sénéchal, David (1997). Conformal field theory. New York: Springer. ISBN   9780387947853.
  5. Bateman, Harry (1908). "The conformal transformations of a space of four dimensions and their applications to geometrical optics"  . Proceedings of the London Mathematical Society. 7: 70–89. doi:10.1112/plms/s2-7.1.70.
  6. Bateman, Harry (1910). "The Transformation of the Electrodynamical Equations"  . Proceedings of the London Mathematical Society. 8: 223–264. doi:10.1112/plms/s2-8.1.223.
  7. Cunningham, Ebenezer (1910). "The principle of Relativity in Electrodynamics and an Extension Thereof"  . Proceedings of the London Mathematical Society. 8: 77–98. doi:10.1112/plms/s2-8.1.77.
  8. Warwick, Andrew (2003). Masters of theory: Cambridge and the rise of mathematical physics . Chicago: University of Chicago Press. pp.  416–24. ISBN   0-226-87375-7.
  9. Robert Gilmore (1994) [1974] Lie Groups, Lie Algebras and some of their Applications, page 349, Robert E. Krieger Publishing ISBN   0-89464-759-8 MR 1275599
  10. Boris Kosyakov (2007) Introduction to the Classical Theory of Particles and Fields, page 216, Springer books via Google Books
  11. Isaak Yaglom (1979) A Simple Non-Euclidean Geometry and its Physical Basis, Springer, ISBN   0387-90332-1, MR 520230
  12. A. O. Barut & H.-D. Doebner (1985) Conformal groups and Related Symmetries: Physical Results and Mathematical Background, Lecture Notes in Physics #261 Springer books, see preface for quotation

Further reading