Isotropic quadratic form

Last updated

In mathematics, a quadratic form over a field F is said to be isotropic if there is a non-zero vector on which the form evaluates to zero. Otherwise it is a definite quadratic form. More explicitly, if q is a quadratic form on a vector space V over F, then a non-zero vector v in V is said to be isotropic if q(v) = 0. A quadratic form is isotropic if and only if there exists a non-zero isotropic vector (or null vector) for that quadratic form.

Contents

Suppose that (V, q) is quadratic space and W is a subspace of V. Then W is called an isotropic subspace of V if some vector in it is isotropic, a totally isotropic subspace if all vectors in it are isotropic, and an definite subspace if it does not contain any (non-zero) isotropic vectors. The isotropy index of a quadratic space is the maximum of the dimensions of the totally isotropic subspaces. [1]

More generally, if the quadratic form is non-degenerate and has the signature (a, b), then its isotropy index is the minimum of a and b. An important example of an isotropic form over the reals occurs in pseudo-Euclidean space.

Hyperbolic plane

Let F be a field of characteristic not 2 and V = F2. If we consider the general element (x, y) of V, then the quadratic forms q = xy and r = x2y2 are equivalent since there is a linear transformation on V that makes q look like r, and vice versa. Evidently, (V, q) and (V, r) are isotropic. This example is called the hyperbolic plane in the theory of quadratic forms. A common instance has F = real numbers in which case {xV : q(x) = nonzero constant} and {xV : r(x) = nonzero constant} are hyperbolas. In particular, {xV : r(x) = 1} is the unit hyperbola. The notation 1−1 has been used by Milnor and Husemoller [1] :9 for the hyperbolic plane as the signs of the terms of the bivariate polynomial r are exhibited.

The affine hyperbolic plane was described by Emil Artin as a quadratic space with basis {M, N} satisfying M2 = N2 = 0, NM = 1, where the products represent the quadratic form. [2]

Through the polarization identity the quadratic form is related to a symmetric bilinear form B(u, v) = 1/4(q(u + v) − q(uv)).

Two vectors u and v are orthogonal when B(u, v) = 0. In the case of the hyperbolic plane, such u and v are hyperbolic-orthogonal.

Split quadratic space

A space with quadratic form is split (or metabolic) if there is a subspace which is equal to its own orthogonal complement; equivalently, the index of isotropy is equal to half the dimension. [1] :57 The hyperbolic plane is an example, and over a field of characteristic not equal to 2, every split space is a direct sum of hyperbolic planes. [1] :12,3

Relation with classification of quadratic forms

From the point of view of classification of quadratic forms, spaces with definite quadratic forms are the basic building blocks for quadratic spaces of arbitrary dimensions. For a general field F, classification of definite quadratic forms is a nontrivial problem. By contrast, the isotropic forms are usually much easier to handle. By Witt's decomposition theorem, every inner product space over a field is an orthogonal direct sum of a split space and an space with definite quadratic form. [1] :56

Field theory

See also

Related Research Articles

<span class="mw-page-title-main">Euclidean space</span> Fundamental space of geometry

Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's Elements, it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any positive integer dimension n, which are called Euclidean n-spaces when one wants to specify their dimension. For n equal to one or two, they are commonly called respectively Euclidean lines and Euclidean planes. The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics.

In mathematics, a Clifford algebra is an algebra generated by a vector space with a quadratic form, and is a unital associative algebra with the additional structure of a distinguished subspace. As K-algebras, they generalize the real numbers, complex numbers, quaternions and several other hypercomplex number systems. The theory of Clifford algebras is intimately connected with the theory of quadratic forms and orthogonal transformations. Clifford algebras have important applications in a variety of fields including geometry, theoretical physics and digital image processing. They are named after the English mathematician William Kingdon Clifford (1845–1879).

<span class="mw-page-title-main">Orthogonal group</span> Type of group in mathematics

In mathematics, the orthogonal group in dimension n, denoted O(n), is the group of distance-preserving transformations of a Euclidean space of dimension n that preserve a fixed point, where the group operation is given by composing transformations. The orthogonal group is sometimes called the general orthogonal group, by analogy with the general linear group. Equivalently, it is the group of n × n orthogonal matrices, where the group operation is given by matrix multiplication (an orthogonal matrix is a real matrix whose inverse equals its transpose). The orthogonal group is an algebraic group and a Lie group. It is compact.

In mathematics, a quadratic form is a polynomial with terms all of degree two. For example,

In mathematics, a bilinear form is a bilinear map V × VK on a vector space V over a field K. In other words, a bilinear form is a function B : V × VK that is linear in each argument separately:

In mathematics, specifically linear algebra, a degenerate bilinear formf (x, y ) on a vector space V is a bilinear form such that the map from V to V (the dual space of V ) given by v ↦ (xf (x, v )) is not an isomorphism. An equivalent definition when V is finite-dimensional is that it has a non-trivial kernel: there exist some non-zero x in V such that

In the mathematical fields of linear algebra and functional analysis, the orthogonal complement of a subspace of a vector space equipped with a bilinear form is the set of all vectors in that are orthogonal to every vector in . Informally, it is called the perp, short for perpendicular complement. It is a subspace of .

<span class="mw-page-title-main">Reductive group</span> Concept in mathematics

In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation that has a finite kernel and is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n). Simple algebraic groups and (more generally) semisimple algebraic groups are reductive.

<span class="mw-page-title-main">Null vector</span> Vector on which a quadratic form is zero

In mathematics, given a vector space X with an associated quadratic form q, written (X, q), a null vector or isotropic vector is a non-zero element x of X for which q(x) = 0.

In mathematics, a symmetric bilinear form on a vector space is a bilinear map from two copies of the vector space to the field of scalars such that the order of the two vectors does not affect the value of the map. In other words, it is a bilinear function that maps every pair of elements of the vector space to the underlying field such that for every and in . They are also referred to more briefly as just symmetric forms when "bilinear" is understood.

In mathematics, the Hasse invariant (or Hasse–Witt invariant) of a quadratic form Q over a field K takes values in the Brauer group Br(K). The name "Hasse–Witt" comes from Helmut Hasse and Ernst Witt.

In mathematics, Witt's theorem, named after Ernst Witt, is a basic result in the algebraic theory of quadratic forms: any isometry between two subspaces of a nonsingular quadratic space over a field k may be extended to an isometry of the whole space. An analogous statement holds also for skew-symmetric, Hermitian and skew-Hermitian bilinear forms over arbitrary fields. The theorem applies to classification of quadratic forms over k and in particular allows one to define the Witt group W(k) which describes the "stable" theory of quadratic forms over the field k.

In mathematics, a Witt group of a field, named after Ernst Witt, is an abelian group whose elements are represented by symmetric bilinear forms over the field.

In mathematics, a Pfister form is a particular kind of quadratic form, introduced by Albrecht Pfister in 1965. In what follows, quadratic forms are considered over a field F of characteristic not 2. For a natural number n, an n-fold Pfister form over F is a quadratic form of dimension 2n that can be written as a tensor product of quadratic forms

In the geometry of quadratic forms, an isotropic line or null line is a line for which the quadratic form applied to the displacement vector between any pair of its points is zero. An isotropic line occurs only with an isotropic quadratic form, and never with a definite quadratic form.

In mathematics and theoretical physics, a pseudo-Euclidean space is a finite-dimensional real n-space together with a non-degenerate quadratic form q. Such a quadratic form can, given a suitable choice of basis (e1, …, en), be applied to a vector x = x1e1 + ⋯ + xnen, giving

In mathematics, a definite quadratic form is a quadratic form over some real vector space V that has the same sign for every non-zero vector of V. According to that sign, the quadratic form is called positive-definite or negative-definite.

In mathematics, a linked field is a field for which the quadratic forms attached to quaternion algebras have a common property.

In mathematics and theoretical physics, a quasi-sphere is a generalization of the hypersphere and the hyperplane to the context of a pseudo-Euclidean space. It may be described as the set of points for which the quadratic form for the space applied to the displacement vector from a centre point is a constant value, with the inclusion of hyperplanes as a limiting case.

<span class="mw-page-title-main">Quadric (algebraic geometry)</span>

In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine space. An example is the quadric surface

References

  1. 1 2 3 4 5 Milnor, J.; Husemoller, D. (1973). Symmetric Bilinear Forms. Ergebnisse der Mathematik und ihrer Grenzgebiete. Vol. 73. Springer-Verlag. ISBN   3-540-06009-X. Zbl   0292.10016.
  2. Emil Artin (1957) Geometric Algebra, page 119 via Internet Archive